1. 概述
肿瘤与微生态的相互作用已成为现代医学研究的前沿领域。最新流行病学数据显示,约20%的恶性肿瘤发生发展与人体微生物组的异常定植、代谢失衡密切相关,涉及消化道肿瘤、乳腺癌、黑色素瘤等多个瘤种,特定病原体(如幽门螺杆菌、具核梭杆菌)通过慢性炎症、免疫调控等机制被确认为致癌因子。学科定义涵盖宿主-微生物相互作用对肿瘤发生、治疗响应及预后的系统性影响,研究范畴包括微生物组标志物筛查、菌群代谢产物干预、微生态重塑治疗等方向。当前焦点集中于核心致癌菌群的异质性特征、菌群干预以及微生态与免疫治疗协同作用的分子机制。在实体瘤中,原发灶与继发病灶的生物学特性差异显著,尤其对于具有高度微环境异质性的瘤种,临床管理面临巨大挑战。以消化道肿瘤为例,虽然常见亚型仅占病理分类的5%-8%,但不同菌群特征可导致治疗敏感性相差3倍以上。随着宏基因组测序、代谢组学及合成生物学技术的突破,研究发现特定共生菌能显著增强免疫治疗疗效,而致病菌过度增殖可诱导化疗耐药。当前治疗模式正从单一抗菌策略转向多维调控,包括选择性菌群移植、工程化益生菌载体、代谢酶靶向抑制等创新手段。内科治疗聚焦于菌群-药物协同增效,如粪菌移植(fecal microbiota transplantation,FMT)联合免疫检查点抑制剂可使晚期黑色素瘤客观缓解率提升至58%。放疗技术创新体现在微生物定向增敏技术,通过调控放射防护相关菌群代谢通路,使肿瘤局部控制率提高22%。微生态治疗领域迎来突破性进展:FMT已从传统艰难梭菌感染拓展至肿瘤免疫治疗增效,Ⅲ期临床试验证实标准化粪菌胶囊可使免疫治疗无应答患者的疾病控制率达到41.2%。新型微生物疗法如合成菌群联合体通过模块化设计实现特定代谢功能编程,在动物模型中成功逆转肿瘤相关免疫失衡。目前争议集中于菌群移植的长期安全性,特别是致癌代谢物(如次级胆汁酸)的跨器官迁移风险。未来需建立多组学指导的个体化微生态干预体系,期待更多开展多中心、大样本临床研究,获取更好的改善肿瘤患者微生态失衡的治疗方法和措施。
4. 本学科发展趋势与对策
4.1 未来5年发展的战略需求
4.1.1 全民健康面临的时代挑战与医学技术革新
在全球公共卫生形势日益严峻的背景下,我国正面临着重大疾病防治的双重压力。统计数据显示,我国每年新发恶性肿瘤病例超450万例,心脑血管疾病年死亡人数达450万,糖尿病、炎症性肠病(inflammatory bowel disease,IBD)等慢性疾病发病率更以年增幅5%-8%的速度攀升。这些"不死的癌症"不仅严重威胁人民生命健康,更带来沉重的社会经济负担——据测算,我国每年因重大慢性病导致的直接医疗费用超3.5万亿元,间接经济损失达GDP的5.8%。传统诊疗模式在应对这一健康危机时已显现明显局限性:三级医院超负荷运转与基层医疗资源闲置并存,生物靶向药物年均治疗费用超15万元且医保覆盖率不足30%,肿瘤患者五年生存率较发达国家仍存在10-15%的差距。这些疾病的全民防控任务艰巨,传统治疗手段对其中的疑难重症难以取得满意效果,临床诊断、治疗及康复带来的社会负担和经济成本巨大。随着党中央和各级政府相关部门深入推进民生改善工程,对临床诊疗新技术发展的投入不断加大,我国在人体微生态与免疫调控诊疗技术领域已取得显著进展,技术水平已接近2007年NIH启动“人类微生物组计划”并于2015年将精准医学计划列为国家医学科技发展重要战略的美国。在大力发展新质生产力、建设全国统一大市场、切实扩大内需的时代背景下,为推动医疗健康事业东中西部地区协同发展、提升基层医疗单位技术水平、大力推行分级诊疗以实现“大病不出本地”的人民健康事业目标,普及和推广人体微生态与免疫调控诊疗这一风险极低、效果确切、易于掌握且不占用基本医疗保险额度、成本相对低廉的先进技术,实现其在县级卫生系统的成果转化及应用,已成为提升全民卫生健康水平的适宜选择之一。在此背景下,整合生物治疗等创新医学科学技术不断涌现并蓬勃发展,特别是人体微生态与免疫调控诊疗技术,作为整合生物治疗重要组成部分,可为治疗上述疑难重症提供新的解决思路和方案。
4.1.2 技术突破与政策支持的协同效应
人体微生态与免疫调控的具体实施手段包括益生菌/益生元/合生元/后生元、活菌成分药物、抗体类生物制剂、细胞与基因药物、肠内外营养、生化免疫调节剂以及最新噬菌体等生物技术产品,以及对FMT核心技术的临床应用。这些手段已在京沪广深及长三角等发达地区被广泛应用于临床一线,并切实解决了诸多临床疑难问题。在国家"健康中国2030"战略指引下,我国生物医学研究实现跨越式发展。人体微生态与免疫调控的核心技术FMT,通过引入健康供体捐献的平衡肠道菌群,有助于移植受者恢复肠道微生态平衡,从而改善疾病症状。该技术已被广泛应用于治疗多种肠道相关疾病,如肠道菌群失调、肠炎、肠易激综合征、IBD等;同时更多研究亦发现其对心脑血管、代谢及内分泌、精神神经系统的疑难疾病,甚至在肿瘤康复和辅助治疗增效方面,也有良好的临床疗效。因疗效证据充分且安全性和依从性也得到验证,FMT已经成为国家卫健委倡导并纳入《全国医疗服务项目技术规范(2023版)》的低风险生物治疗技术。国家卫生健康委医院管理研究所发布的《肠道菌群移植临床应用管理中国专家共识(2022)版》为FMT的临床应用提供了指导和规范。自2016年科技部启动"精准医学研究"重点专项以来,累计投入超50亿元支持微生态领域研究,已建成全球最大规模的人类肠道菌群数据库(覆盖50万样本)。值得关注的是,我国在FMT技术临床应用方面已形成完整技术标准体系,截至2023年底累计完成肠菌移植治疗超20万例次,临床有效率突破82%,技术成熟度比肩国际先进水平。政策层面,国家卫健委等十部委联合印发的《"十四五"医疗装备产业发展规划》明确将微生态诊疗设备列为重点发展领域。2023版《全国医疗服务项目技术规范》首次将FMT纳入医保支付范围,基层医疗机构开展相关技术可获得最高50%的专项补贴。这种"技术+政策"的双轮驱动模式,为技术下沉创造了历史性机遇。
4.1.3 县域医疗赋能的三维创新模式
如能积极推动类似FMT这样疗效好、风险小、成本低 的新技术在县级医疗机构得到广泛应用和推广,必将从以下几方面为基层医疗卫生行业新质生产力建设赋能:(1)学科建设创新维度:县级医院通过建立微生态诊疗中心,可系统开展菌群检测-免疫评估-个性化干预的闭环诊疗。以浙江德清县人民医院为例,其建立的县域微生态实验室年检测能力达1.2万例,成功申报省级重点专科。这种"临床-科研-转化"一体化模式,使基层医院学科建设实现质的飞跃。此外,开展人体微生态与免疫调控技术的研究与应用,有助于临床医生积累临床数据,发表高水平论文,促进基层医院及相关科室提升业务能力与水平。(2)技术转化创新路径:构建"1+3+N"技术推广体系:以县域医共体为枢纽,搭建标准化肠菌库、智能配型系统、远程质控平台,辐射N个基层卫生机构。山东平邑县通过该模式,实现FMT技术乡镇卫生院覆盖率60%,治疗费用降至三甲医院的1/3,患者县域外转率下降41%。开展肠道菌群检测和免疫功能检测及肠菌移植物的配型与制备,可充分利用医院既有P2实验室并扩展功能和促进设备升级,促进规范的健康供体捐赠系统建设,以及肠菌库标准化和信息化的完善。(3)效益提升创新机制:经济效益方面,FMT单次治疗成本仅传统生物制剂的1/5,且可重复利用医疗设备,某县级医院统计显示开展该技术后检验科设备利用率提升35%。社会效益更为显著:河南兰考县实施"微生态扶贫工程"后,IBD患者年人均医疗支出减少1.2万元,因病致贫率下降28个百分点。开展FMT技术应用可降低传统药械的医疗费用占比,减轻基本医疗保险压力,避免病人流失,推进实现“分级诊疗”和“大病不出本地”,同时提升县级医院专科与综合实力,增加医疗服务技术收入,减轻对北上广深优质医疗资源的过度依赖,高质量促进全国范围医疗领域新质生产力建设。
4.1.4 技术规范与质量控制的体系构建
为确保技术推广的规范性和安全性,我国已建立四级质控体系:(1)国家层面:《肠道菌群移植技术管理规范(2023版)》设定118项质控指标;(2)省级层面:建立区域性质控中心,如华东六省一市联合质控平台;(3)机构层面:实施供体"五维筛查法"(基因、代谢、免疫、病原、心理评估);(4)个体层面:采用区块链技术的全程溯源系统。值得关注的是,智能技术的发展正在重塑技术应用场景。AI辅助供受体匹配系统使配型准确率提升至98.7%,5G远程会诊平台让基层医生可获得实时技术指导,微生态大数据中心已积累300TB临床数据,为精准治疗提供强力支撑。
4.1.5 未来展望与发展建议
随着《"十四五"生物经济发展规划》的深入实施,人体微生态与免疫调控技术将迎来更广阔的应用前景。建议:(1)建立东西部技术协作联盟,实现资源跨区域配置;(2)开发适用于基层的便携式检测设备(如掌上菌群分析仪);(3)构建继续教育云平台,年内培训5万名基层技术人员;(4)将微生态指标纳入全民健康档案,实现疾病早期预警。这场静悄悄发生的医学革命,正在重塑我国医疗卫生服务体系。当前沿生物技术邂逅基层医疗实践,不仅为解决"看病难、看病贵"问题提供新方案,更在深层次推动医疗资源分布格局的优化重构。这种技术创新与制度创新的共振,终将奏响健康中国建设的最强音。
【主编】
王 强 武汉科技大学医学院
郭 智 深圳大学附属南山医院
谭晓华 中国人民解放军总医院第七医学中心
【副主编】
吴清明 武汉科技大学医学院
舒 榕 湖北省第三人民医院
黄自明 湖北省妇幼保健院
李小安 绵阳市中心医院
梁 婧 山东第一医科大学第一附属医院
【编委】(按姓氏拼音排序)
刘 姗 深圳大学附属南山医院
王 钧 香港大学深圳医院
钟 楠 深圳大学附属南山医院
胡伟国 武汉大学人民医院
邵 亮 武汉大学中南医院
余春姣 湖北省妇幼保健院
夏 涛 湖北省第三人民医院
李 磊 武汉亚心总医院
何明心 深圳大学附属南山医院
王小梅 武汉科技大学医学院
万京桦 武汉科技大学医学院
向晓晨 武汉科技大学医学院
孟景晔 深圳市第三人民医院
许晓军 中山大学附属第七医院
王 亮 首都医科大学附属北京同仁医院
吴 为 广东省公共卫生研究院
周 浩 华中科技大学同济医学院附属协和医院
杨文燕 山东第一医科大学
乔明强 山西大学生命科学学院
任 骅 南方科技大学医学院
瞿 嵘 惠州市中心人民医院
张宏艳 解放军总医院第三医学中心
张育葵 湖北中医药大学附属襄阳中医医院
胡碧川 襄阳市中西医结合医院
陈 丰 华中科技大学同济医学院附属武汉中心医院
★
参考文献(向上滑动阅览)
[1] THOMAS S, IZARD J, WALSH E, et al. The Host Microbiome Regulates and Maintains Human Health: A Primer and Perspective for Non-Microbiologists [J]. Cancer Res, 2017, 77(8): 1783-812. DOI: 10.1158/0008-5472.Can-16-2929.
[2] HANAHAN D. Hallmarks of Cancer: New Dimensions [J]. Cancer Discov, 2022, 12(1): 31-46. DOI: 10.1158/2159-8290.Cd-21-1059.
[3] JAYE K, LI C G, BHUYAN D J. The complex interplay of gut microbiota with the five most common cancer types: From carcinogenesis to therapeutics to prognoses [J]. Critical Reviews in Oncology/Hematology, 2021, 165(103429. DOI: https://doi.org/10.1016/j.critrevonc.2021.103429.
[4] CAO Y, XIA H, TAN X, et al. Intratumoural microbiota: a new frontier in cancer development and therapy [J]. Signal Transduction and Targeted Therapy, 2024, 9(1): 15. DOI: 10.1038/s41392-023-01693-0.
[5] ZHAO L-Y, MEI J-X, YU G, et al. Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications [J]. Signal Transduction and Targeted Therapy, 2023, 8(1): 201. DOI: 10.1038/s41392-023-01406-7.
[6] KUNIKA, FREY N, RANGREZ A Y. Exploring the Involvement of Gut Microbiota in Cancer Therapy-Induced Cardiotoxicity [J]. Int J Mol Sci, 2023, 24(8): DOI: 10.3390/ijms24087261.
[7] SEPICH-POORE G D, ZITVOGEL L, STRAUSSMAN R, et al. The microbiome and human cancer [J]. Science, 2021, 371(6536): DOI: 10.1126/science.abc4552.
[8] ALEXANDER J L, WILSON I D, TEARE J, et al. Gut microbiota modulation of chemotherapy efficacy and toxicity [J]. Nat Rev Gastroenterol Hepatol, 2017, 14(6): 356-65. DOI: 10.1038/nrgastro.2017.20.
[9] PAASKE S E, BAUMWALL S M D, RUBAK T, et al. Real-world Effectiveness of Fecal Microbiota Transplantation for First or Second Clostridioides difficile Infection [J]. Clinical Gastroenterology and Hepatology, 2024, DOI: https://doi.org/10.1016/j.cgh.2024.05.038.
[10] FORSLUND K, SUNAGAWA S, KULTIMA J R, et al. Country-specific antibiotic use practices impact the human gut resistome [J]. Genome Res, 2013, 23(7): 1163-9. DOI: 10.1101/gr.155465.113.
[11] BUFFIE C G, PAMER E G. Microbiota-mediated colonization resistance against intestinal pathogens [J]. Nat Rev Immunol, 2013, 13(11): 790-801. DOI: 10.1038/nri3535.
[12] MONTASSIER E, GASTINNE T, VANGAY P, et al. Chemotherapy-driven dysbiosis in the intestinal microbiome [J]. Aliment Pharmacol Ther, 2015, 42(5): 515-28. DOI: 10.1111/apt.13302.
[13] GALLOWAY-PEñA J R, SMITH D P, SAHASRABHOJANE P, et al. The role of the gastrointestinal microbiome in infectious complications during induction chemotherapy for acute myeloid leukemia [J]. Cancer, 2016, 122(14): 2186-96. DOI: 10.1002/cncr.30039.
[14] GALLOWAY-PEñA J R, SMITH D P, SAHASRABHOJANE P, et al. Characterization of oral and gut microbiome temporal variability in hospitalized cancer patients [J]. Genome Med, 2017, 9(1): 21. DOI: 10.1186/s13073-017-0409-1.
[15] WEBER D, JENQ R R, PELED J U, et al. Microbiota Disruption Induced by Early Use of Broad-Spectrum Antibiotics Is an Independent Risk Factor of Outcome after Allogeneic Stem Cell Transplantation [J]. Biol Blood Marrow Transplant, 2017, 23(5): 845-52. DOI: 10.1016/j.bbmt.2017.02.006.
[16] TAUR Y, JENQ R R, PERALES M A, et al. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation [J]. Blood, 2014, 124(7): 1174-82. DOI: 10.1182/blood-2014-02-554725.
[17] HOLLER E, BUTZHAMMER P, SCHMID K, et al. Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft-versus-host disease [J]. Biol Blood Marrow Transplant, 2014, 20(5): 640-5. DOI: 10.1016/j.bbmt.2014.01.030.
[18] STEIN-THOERINGER C K, NICHOLS K B, LAZRAK A, et al. Lactose drives Enterococcus expansion to promote graft-versus-host disease [J]. Science, 2019, 366(6469): 1143-9. DOI: 10.1126/science.aax3760.
[19] USTUN C, YOUNG J H, PAPANICOLAOU G A, et al. Bacterial blood stream infections (BSIs), particularly post-engraftment BSIs, are associated with increased mortality after allogeneic hematopoietic cell transplantation [J]. Bone Marrow Transplant, 2019, 54(8): 1254-65. DOI: 10.1038/s41409-018-0401-4.
[20] HARRIS B, MORJARIA S M, LITTMANN E R, et al. Gut Microbiota Predict Pulmonary Infiltrates after Allogeneic Hematopoietic Cell Transplantation [J]. Am J Respir Crit Care Med, 2016, 194(4): 450-63. DOI: 10.1164/rccm.201507-1491OC.
[21] PELED J U, GOMES A L C, DEVLIN S M, et al. Microbiota as Predictor of Mortality in Allogeneic Hematopoietic-Cell Transplantation [J]. N Engl J Med, 2020, 382(9): 822-34. DOI: 10.1056/NEJMoa1900623.
[22] KUSAKABE S, FUKUSHIMA K, MAEDA T, et al. Pre- and post-serial metagenomic analysis of gut microbiota as a prognostic factor in patients undergoing haematopoietic stem cell transplantation [J]. Br J Haematol, 2020, 188(3): 438-49. DOI: 10.1111/bjh.16205.
[23] TAUR Y, COYTE K, SCHLUTER J, et al. Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant [J]. Sci Transl Med, 2018, 10(460): DOI: 10.1126/scitranslmed.aap9489.
[24] RASHIDI A, EBADI M, REHMAN T U, et al. Randomized Double-Blind Phase II Trial of Fecal Microbiota Transplantation Versus Placebo in Allogeneic Hematopoietic Cell Transplantation and AML [J]. J Clin Oncol, 2023, 41(34): 5306-19. DOI: 10.1200/jco.22.02366.
[25] SHONO Y, VAN DEN BRINK M R M. Gut microbiota injury in allogeneic haematopoietic stem cell transplantation [J]. Nat Rev Cancer, 2018, 18(5): 283-95. DOI: 10.1038/nrc.2018.10.
[26] DEFILIPP Z, PELED J U, LI S, et al. Third-party fecal microbiota transplantation following allo-HCT reconstitutes microbiome diversity [J]. Blood Adv, 2018, 2(7): 745-53. DOI: 10.1182/bloodadvances.2018017731.
[27] MALARD F, VEKHOFF A, LAPUSAN S, et al. Gut microbiota diversity after autologous fecal microbiota transfer in acute myeloid leukemia patients [J]. Nat Commun, 2021, 12(1): 3084. DOI: 10.1038/s41467-021-23376-6.
[28] MANCINI N, GRECO R, PASCIUTA R, et al. Enteric Microbiome Markers as Early Predictors of Clinical Outcome in Allogeneic Hematopoietic Stem Cell Transplant: Results of a Prospective Study in Adult Patients [J]. Open Forum Infect Dis, 2017, 4(4): ofx215. DOI: 10.1093/ofid/ofx215.
[29] BILINSKI J, GRZESIOWSKI P, SORENSEN N, et al. Fecal Microbiota Transplantation in Patients With Blood Disorders Inhibits Gut Colonization With Antibiotic-Resistant Bacteria: Results of a Prospective, Single-Center Study [J]. Clin Infect Dis, 2017, 65(3): 364-70. DOI: 10.1093/cid/cix252.
[30] RASHIDI A, EBADI M, REHMAN T U, et al. Long- and short-term effects of fecal microbiota transplantation on antibiotic resistance genes: results from a randomized placebo-controlled trial [J]. Gut Microbes, 2024, 16(1): 2327442. DOI: 10.1080/19490976.2024.2327442.
[31] FORCINA A, LORENTINO F, MARASCO V, et al. Clinical Impact of Pretransplant Multidrug-Resistant Gram-Negative Colonization in Autologous and Allogeneic Hematopoietic Stem Cell Transplantation [J]. Biol Blood Marrow Transplant, 2018, 24(7): 1476-82. DOI: 10.1016/j.bbmt.2018.02.021.
[32] SADOWSKA-KLASA A, PIEKARSKA A, PREJZNER W, et al. Colonization with multidrug-resistant bacteria increases the risk of complications and a fatal outcome after allogeneic hematopoietic cell transplantation [J]. Ann Hematol, 2018, 97(3): 509-17. DOI: 10.1007/s00277-017-3205-5.
[33] BATTIPAGLIA G, MALARD F, RUBIO M T, et al. Fecal microbiota transplantation before or after allogeneic hematopoietic transplantation in patients with hematologic malignancies carrying multidrug-resistance bacteria [J]. Haematologica, 2019, 104(8): 1682-8. DOI: 10.3324/haematol.2018.198549.
[34] INNES A J, MULLISH B H, GHANI R, et al. Fecal Microbiota Transplant Mitigates Adverse Outcomes Seen in Patients Colonized With Multidrug-Resistant Organisms Undergoing Allogeneic Hematopoietic Cell Transplantation [J]. Front Cell Infect Microbiol, 2021, 11(684659. DOI: 10.3389/fcimb.2021.684659.
[35] SHALLIS R M, TERRY C M, LIM S H. Changes in intestinal microbiota and their effects on allogeneic stem cell transplantation [J]. American Journal of Hematology, 2018, 93(1): 122-8. DOI: https://doi.org/10.1002/ajh.24896.
[36] WOODWORTH M H, CONRAD R E, HALDOPOULOS M, et al. Fecal microbiota transplantation promotes reduction of antimicrobial resistance by strain replacement [J]. Sci Transl Med, 2023, 15(720): eabo2750. DOI: 10.1126/scitranslmed.abo2750.
[37] BRITTON R A, YOUNG V B. Role of the intestinal microbiota in resistance to colonization by Clostridium difficile [J]. Gastroenterology, 2014, 146(6): 1547-53. DOI: 10.1053/j.gastro.2014.01.059.
[38] ILETT E E, HELLEBERG M, REEKIE J, et al. Incidence Rates and Risk Factors of Clostridioides difficile Infection in Solid Organ and Hematopoietic Stem Cell Transplant Recipients [J]. Open Forum Infect Dis, 2019, 6(4): ofz086. DOI: 10.1093/ofid/ofz086.
[39] ROSIGNOLI C, PETRUZZELLIS G, RADICI V, et al. Risk Factors and Outcome of C. difficile Infection after Hematopoietic Stem Cell Transplantation [J]. J Clin Med, 2020, 9(11): DOI: 10.3390/jcm9113673.
[40] JABR R, EL ATROUNI W, SHUNE L, et al. Clostridioides difficile Infection and Risk of Acute Graft-versus-Host Disease among Allogeneic Hematopoietic Stem Cell Transplantation Recipients [J]. Transplant Cell Ther, 2021, 27(2): 176.e1-.e8. DOI: 10.1016/j.jtct.2020.10.009.
[41] JAIN T, CROSWELL C, URDAY-CORNEJO V, et al. Clostridium Difficile Colonization in Hematopoietic Stem Cell Transplant Recipients: A Prospective Study of the Epidemiology and Outcomes Involving Toxigenic and Nontoxigenic Strains [J]. Biol Blood Marrow Transplant, 2016, 22(1): 157-63. DOI: 10.1016/j.bbmt.2015.07.020.
[42] FRIEDMAN N D, POLLARD J, STUPART D, et al. Prevalence of Clostridium difficile colonization among healthcare workers [J]. BMC Infect Dis, 2013, 13(459. DOI: 10.1186/1471-2334-13-459.
[43] ZACHARIOUDAKIS I M, ZERVOU F N, PLIAKOS E E, et al. Colonization with toxinogenic C. difficile upon hospital admission, and risk of infection: a systematic review and meta-analysis [J]. Am J Gastroenterol, 2015, 110(3): 381-90; quiz 91. DOI: 10.1038/ajg.2015.22.
[44] CHOPRA T, ALANGADEN G J, CHANDRASEKAR P. Clostridium difficile infection in cancer patients and hematopoietic stem cell transplant recipients [J]. Expert Rev Anti Infect Ther, 2010, 8(10): 1113-9. DOI: 10.1586/eri.10.95.
[45] KINNEBREW M A, LEE Y J, JENQ R R, et al. Early Clostridium difficile infection during allogeneic hematopoietic stem cell transplantation [J]. PLoS One, 2014, 9(3): e90158. DOI: 10.1371/journal.pone.0090158.
[46] BUFFIE C G, BUCCI V, STEIN R R, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile [J]. Nature, 2015, 517(7533): 205-8. DOI: 10.1038/nature13828.
[47] LUO Y, ZHANG S, SHANG H, et al. Prevalence of Clostridium difficile Infection in the Hematopoietic Transplantation Setting: Update of Systematic Review and Meta-Analysis [J]. Front Cell Infect Microbiol, 2022, 12(801475. DOI: 10.3389/fcimb.2022.801475.
[48] PRAYAG P S, PATWARDHAN S A, AJAPUJE P S, et al. Fecal Microbiota Transplantation for Clostridium difficile-associated Diarrhea in Hematopoietic Stem Cell Transplant Recipients: A Single-center Experience from a Tertiary Center in India [J]. Indian J Crit Care Med, 2024, 28(2): 106-10. DOI: 10.5005/jp-journals-10071-24607.
[49] CHONG P P, KOH A Y. The gut microbiota in transplant patients [J]. Blood Rev, 2020, 39(100614. DOI: 10.1016/j.blre.2019.100614.
[50] DEFILIPP Z, HOHMANN E, JENQ R R, et al. Fecal Microbiota Transplantation: Restoring the Injured Microbiome after Allogeneic Hematopoietic Cell Transplantation [J]. Biol Blood Marrow Transplant, 2019, 25(1): e17-e22. DOI: 10.1016/j.bbmt.2018.10.022.
[51] JENQ R R, TAUR Y, DEVLIN S M, et al. Intestinal Blautia Is Associated with Reduced Death from Graft-versus-Host Disease [J]. Biol Blood Marrow Transplant, 2015, 21(8): 1373-83. DOI: 10.1016/j.bbmt.2015.04.016.
[52] GU Z, XIONG Q, WANG L, et al. The impact of intestinal microbiota in antithymocyte globulin-based myeloablative allogeneic hematopoietic cell transplantation [J]. Cancer, 2022, 128(7): 1402-10. DOI: 10.1002/cncr.34091.
[53] JENQ R R, UBEDA C, TAUR Y, et al. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation [J]. J Exp Med, 2012, 209(5): 903-11. DOI: 10.1084/jem.20112408.
[54] BIAGI E, ZAMA D, NASTASI C, et al. Gut microbiota trajectory in pediatric patients undergoing hematopoietic SCT [J]. Bone Marrow Transplant, 2015, 50(7): 992-8. DOI: 10.1038/bmt.2015.16.
[55] GAVRIILAKI M, SAKELLARI I, ANAGNOSTOPOULOS A, et al. The Impact of Antibiotic-Mediated Modification of the Intestinal Microbiome on Outcomes of Allogeneic Hematopoietic Cell Transplantation: Systematic Review and Meta-Analysis [J]. Biol Blood Marrow Transplant, 2020, 26(9): 1738-46. DOI: 10.1016/j.bbmt.2020.05.011.
[56] KAKIHANA K, FUJIOKA Y, SUDA W, et al. Fecal microbiota transplantation for patients with steroid-resistant acute graft-versus-host disease of the gut [J]. Blood, 2016, 128(16): 2083-8. DOI: 10.1182/blood-2016-05-717652.
[57] GOLOSHCHAPOV O, CHUKHLOVIN A, BAKIN E, et al. Fecal microbiota transplantation for graft-versus-host disease in children and adults: methods, clinical effects, safety [J]. Terapevticheskii arkhiv, 2020, 92(7): 43-54. DOI: 10.26442/00403660.2020.07.000773.
[58] QIAO X, BILI?SKI J, WANG L, et al. Safety and efficacy of fecal microbiota transplantation in the treatment of graft-versus-host disease [J]. Bone Marrow Transplant, 2023, 58(1): 10-9. DOI: 10.1038/s41409-022-01824-1.
[59] BILINSKI J, LIS K, TOMASZEWSKA A, et al. Fecal microbiota transplantation in patients with acute and chronic graft-versus-host disease-spectrum of responses and safety profile. Results from a prospective, multicenter study [J]. Am J Hematol, 2021, 96(3): E88-e91. DOI: 10.1002/ajh.26077.
[60] SPINDELBOECK W, HALWACHS B, BAYER N, et al. Antibiotic use and ileocolonic immune cells in patients receiving fecal microbiota transplantation for refractory intestinal GvHD: a prospective cohort study [J]. Ther Adv Hematol, 2021, 12(20406207211058333. DOI: 10.1177/20406207211058333.
[61] SPINDELBOECK W, SCHULZ E, UHL B, et al. Repeated fecal microbiota transplantations attenuate diarrhea and lead to sustained changes in the fecal microbiota in acute, refractory gastrointestinal graft-versus-host-disease [J]. Haematologica, 2017, 102(5): e210-e3. DOI: 10.3324/haematol.2016.154351.
[62] KAITO S, TOYA T, YOSHIFUJI K, et al. Fecal microbiota transplantation with frozen capsules for a patient with refractory acute gut graft-versus-host disease [J]. Blood Adv, 2018, 2(22): 3097-101. DOI: 10.1182/bloodadvances.2018024968.
[63] MALARD F, LOSCHI M, HUYNH A, et al. Pooled allogeneic faecal microbiota MaaT013 for steroid-resistant gastrointestinal acute graft-versus-host disease: a single-arm, multicentre phase 2 trial [J]. EClinicalMedicine, 2023, 62(102111. DOI: 10.1016/j.eclinm.2023.102111.
[64] ZHAO Y, LI X, ZHOU Y, et al. Safety and Efficacy of Fecal Microbiota Transplantation for Grade IV Steroid Refractory GI-GvHD Patients: Interim Results From FMT2017002 Trial [J]. Front Immunol, 2021, 12(678476. DOI: 10.3389/fimmu.2021.678476.
[65] VAN LIER Y F, DAVIDS M, HAVERKATE N J E, et al. Donor fecal microbiota transplantation ameliorates intestinal graft-versus-host disease in allogeneic hematopoietic cell transplant recipients [J]. Sci Transl Med, 2020, 12(556): DOI: 10.1126/scitranslmed.aaz8926.
[66] LEE C H, STEINER T, PETROF E O, et al. Frozen vs Fresh Fecal Microbiota Transplantation and Clinical Resolution of Diarrhea in Patients With Recurrent Clostridium difficile Infection: A Randomized Clinical Trial [J]. Jama, 2016, 315(2): 142-9. DOI: 10.1001/jama.2015.18098.
[67] KAO D, ROACH B, SILVA M, et al. Effect of Oral Capsule- vs Colonoscopy-Delivered Fecal Microbiota Transplantation on Recurrent Clostridium difficile Infection: A Randomized Clinical Trial [J]. Jama, 2017, 318(20): 1985-93. DOI: 10.1001/jama.2017.17077.
[68] ZEISER R, VON BUBNOFF N, BUTLER J, et al. Ruxolitinib for Glucocorticoid-Refractory Acute Graft-versus-Host Disease [J]. N Engl J Med, 2020, 382(19): 1800-10. DOI: 10.1056/NEJMoa1917635.
[69] FEARON K, STRASSER F, ANKER S D, et al. Definition and classification of cancer cachexia: an international consensus [J]. Lancet Oncol, 2011, 12(5): 489-95. DOI: 10.1016/s1470-2045(10)70218-7.
[70] KALANTAR-ZADEH K, RHEE C, SIM J J, et al. Why cachexia kills: examining the causality of poor outcomes in wasting conditions [J]. J Cachexia Sarcopenia Muscle, 2013, 4(2): 89-94. DOI: 10.1007/s13539-013-0111-0.
[71] ZAORSKY N G, CHURILLA T M, EGLESTON B L, et al. Causes of death among cancer patients [J]. Ann Oncol, 2017, 28(2): 400-7. DOI: 10.1093/annonc/mdw604.
[72] BINDELS L B, BECK R, SCHAKMAN O, et al. Restoring specific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model [J]. PLoS One, 2012, 7(6): e37971. DOI: 10.1371/journal.pone.0037971.
[73] BINDELS L B, NEYRINCK A M, CLAUS S P, et al. Synbiotic approach restores intestinal homeostasis and prolongs survival in leukaemic mice with cachexia [J]. Isme j, 2016, 10(6): 1456-70. DOI: 10.1038/ismej.2015.209.
[74] DE CLERCQ N C, VAN DEN ENDE T, PRODAN A, et al. Fecal Microbiota Transplantation from Overweight or Obese Donors in Cachectic Patients with Advanced Gastroesophageal Cancer: A Randomized, Double-blind, Placebo-Controlled, Phase II Study [J]. Clin Cancer Res, 2021, 27(13): 3784-92. DOI: 10.1158/1078-0432.Ccr-20-4918.
[75] HERREMANS K M, RINER A N, CAMERON M E, et al. The Microbiota and Cancer Cachexia [J]. Int J Mol Sci, 2019, 20(24): DOI: 10.3390/ijms20246267.
[76] BAGCHI S, YUAN R, ENGLEMAN E G. Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance [J]. Annual Review of Pathology: Mechanisms of Disease, 2021, 16(Volume 16, 2021): 223-49. DOI: https://doi.org/10.1146/annurev-pathol-042020-042741.
[77] SHARMA P, SIDDIQUI B A, ANANDHAN S, et al. The Next Decade of Immune Checkpoint Therapy [J]. Cancer Discovery, 2021, 11(4): 838-57. DOI: 10.1158/2159-8290.Cd-20-1680.
[78] YAP T A, PARKES E E, PENG W, et al. Development of Immunotherapy Combination Strategies in Cancer [J]. Cancer Discovery, 2021, 11(6): 1368-97. DOI: 10.1158/2159-8290.Cd-20-1209.
[79] SHARPE A H, PAUKEN K E. The diverse functions of the PD1 inhibitory pathway [J]. Nature Reviews Immunology, 2018, 18(3): 153-67. DOI: 10.1038/nri.2017.108.
[80] SANMAMED M F, CHEN L. A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization [J]. Cell, 2018, 175(2): 313-26. DOI: https://doi.org/10.1016/j.cell.2018.09.035.
[81] HASLAM A, PRASAD V. Estimation of the Percentage of US Patients With Cancer Who Are Eligible for and Respond to Checkpoint Inhibitor Immunotherapy Drugs [J]. JAMA Network Open, 2019, 2(5): e192535-e. DOI: 10.1001/jamanetworkopen.2019.2535.
[82] PARK E M, CHELVANAMBI M, BHUTIANI N, et al. Targeting the gut and tumor microbiota in cancer [J]. Nature Medicine, 2022, 28(4): 690-703. DOI: 10.1038/s41591-022-01779-2.
[83] BARUCH E N, YOUNGSTER I, BEN-BETZALEL G, et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients [J]. Science, 2021, 371(6529): 602-9. DOI: 10.1126/science.abb5920.
[84] DAVAR D, DZUTSEV A K, MCCULLOCH J A, et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients [J]. Science, 2021, 371(6529): 595-602. DOI: 10.1126/science.abf3363.
[85] BORGERS J S W, BURGERS F H, TERVEER E M, et al. Conversion of unresponsiveness to immune checkpoint inhibition by fecal microbiota transplantation in patients with metastatic melanoma: study protocol for a randomized phase Ib/IIa trial [J]. BMC Cancer, 2022, 22(1): 1366. DOI: 10.1186/s12885-022-10457-y.
[86] ROUTY B, LENEHAN J G, MILLER W H, JR., et al. Fecal microbiota transplantation plus anti-PD-1 immunotherapy in advanced melanoma: a phase I trial [J]. Nat Med, 2023, 29(8): 2121-32. DOI: 10.1038/s41591-023-02453-x.
[87] SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2018 [J]. CA Cancer J Clin, 2018, 68(1): 7-30. DOI: 10.3322/caac.21442.
[88] CAPITANIO U, MONTORSI F. Renal cancer [J]. Lancet, 2016, 387(10021): 894-906. DOI: 10.1016/s0140-6736(15)00046-x.
[89] CHOUEIRI T K, MOTZER R J. Systemic Therapy for Metastatic Renal-Cell Carcinoma [J]. N Engl J Med, 2017, 376(4): 354-66. DOI: 10.1056/NEJMra1601333.
[90] GORE M E, SZCZYLIK C, PORTA C, et al. Final results from the large sunitinib global expanded-access trial in metastatic renal cell carcinoma [J]. Br J Cancer, 2015, 113(1): 12-9. DOI: 10.1038/bjc.2015.196.
[91] STERNBERG C N, DAVIS I D, MARDIAK J, et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial [J]. J Clin Oncol, 2010, 28(6): 1061-8. DOI: 10.1200/jco.2009.23.9764.
[92] MOTZER R J, HUTSON T E, TOMCZAK P, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma [J]. N Engl J Med, 2007, 356(2): 115-24. DOI: 10.1056/NEJMoa065044.
[93] JONASCH E, SLACK R S, GEYNISMAN D M, et al. Phase II Study of Two Weeks on, One Week off Sunitinib Scheduling in Patients With Metastatic Renal Cell Carcinoma [J]. J Clin Oncol, 2018, 36(16): 1588-93. DOI: 10.1200/jco.2017.77.1485.
[94] IANIRO G, ROSSI E, THOMAS A M, et al. Faecal microbiota transplantation for the treatment of diarrhoea induced by tyrosine-kinase inhibitors in patients with metastatic renal cell carcinoma [J]. Nat Commun, 2020, 11(1): 4333. DOI: 10.1038/s41467-020-18127-y.
[95] BILI?SKI J, JASI?SKI M, TOMASZEWSKA A, et al. Fecal microbiota transplantation with ruxolitinib as a treatment modality for steroid-refractory/dependent acute, gastrointestinal graft-versus-host disease: A case series [J]. Am J Hematol, 2021, 96(12): E461-e3. DOI: 10.1002/ajh.26365.
[96] QI X, LI X, ZHAO Y, et al. Treating Steroid Refractory Intestinal Acute Graft-vs.-Host Disease With Fecal Microbiota Transplantation: A Pilot Study [J]. Front Immunol, 2018, 9(2195. DOI: 10.3389/fimmu.2018.02195.
[97] LIU Y, ZHAO Y, QI J, et al. Fecal microbiota transplantation combined with ruxolitinib as a salvage treatment for intestinal steroid-refractory acute GVHD [J]. Experimental Hematology & Oncology, 2022, 11(1): 96. DOI: 10.1186/s40164-022-00350-6.
[98] GOESER F, SIFFT B, STEIN-THOERINGER C, et al. Fecal microbiota transfer for refractory intestinal graft-versus-host disease - Experience from two German tertiary centers [J]. Eur J Haematol, 2021, 107(2): 229-45. DOI: 10.1111/ejh.13642.
[99] GHANI R, MULLISH B H, MCDONALD J A K, et al. Disease Prevention Not Decolonization: A Model for Fecal Microbiota Transplantation in Patients Colonized With Multidrug-resistant Organisms [J]. Clin Infect Dis, 2021, 72(8): 1444-7. DOI: 10.1093/cid/ciaa948.
[100] OLESEN S W, LEIER M M, ALM E J, et al. Searching for superstool: maximizing the therapeutic potential of FMT [J]. Nat Rev Gastroenterol Hepatol, 2018, 15(7): 387-8. DOI: 10.1038/s41575-018-0019-4.
[101] HABIBI S, RASHIDI A. Fecal microbiota transplantation in hematopoietic cell transplant and cellular therapy recipients: lessons learned and the path forward [J]. Gut Microbes, 2023, 15(1): 2229567. DOI: 10.1080/19490976.2023.2229567.
[102] DEFILIPP Z, BLOOM P P, TORRES SOTO M, et al. Drug-Resistant E. coli Bacteremia Transmitted by Fecal Microbiota Transplant [J]. N Engl J Med, 2019, 381(21): 2043-50. DOI: 10.1056/NEJMoa1910437.
[103] BILINSKI J, LIS K, TOMASZEWSKA A, et al. Eosinophilic gastroenteritis and graft-versus-host disease induced by transmission of Norovirus with fecal microbiota transplant [J]. Transpl Infect Dis, 2021, 23(1): e13386. DOI: 10.1111/tid.13386.
[104] ESHEL A, SHARON I, NAGLER A, et al. Origins of bloodstream infections following fecal microbiota transplantation: a strain-level analysis [J]. Blood Adv, 2022, 6(2): 568-73. DOI: 10.1182/bloodadvances.2021005110.
[105] BAKKEN J S, BORODY T, BRANDT L J, et al. Treating Clostridium difficile infection with fecal microbiota transplantation [J]. Clin Gastroenterol Hepatol, 2011, 9(12): 1044-9. DOI: 10.1016/j.cgh.2011.08.014.
[106] DAVIDOVICS Z H, MICHAIL S, NICHOLSON M R, et al. Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infection and Other Conditions in Children: A Joint Position Paper From the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition [J]. J Pediatr Gastroenterol Nutr, 2019, 68(1): 130-43. DOI: 10.1097/mpg.0000000000002205.
[107] CAMMAROTA G, IANIRO G, KELLY C R, et al. International consensus conference on stool banking for faecal microbiota transplantation in clinical practice [J]. Gut, 2019, 68(12): 2111-21. DOI: 10.1136/gutjnl-2019-319548.
[108] HENIG I, YEHUDAI-OFIR D, ZUCKERMAN T. The clinical role of the gut microbiome and fecal microbiota transplantation in allogeneic stem cell transplantation [J]. Haematologica, 2021, 106(4): 933-46. DOI: 10.3324/haematol.2020.247395.
[109] VEHRESCHILD M, DUCHER A, LOUIE T, et al. An open randomized multicentre Phase 2 trial to assess the safety of DAV132 and its efficacy to protect gut microbiota diversity in hospitalized patients treated with fluoroquinolones [J]. J Antimicrob Chemother, 2022, 77(4): 1155-65. DOI: 10.1093/jac/dkab474.
[110] ZHANG F, ZUO T, YEOH Y K, et al. Longitudinal dynamics of gut bacteriome, mycobiome and virome after fecal microbiota transplantation in graft-versus-host disease [J]. Nat Commun, 2021, 12(1): 65. DOI: 10.1038/s41467-020-20240-x.
[111] 郭智,王强,郭智,等.肠菌移植制备和质控实验室标准化技术规范中国专家共识(2023版)[J].中国微生态学杂志,2024,36(06):705-711+717.
[112] 中国抗癌协会肿瘤与微生态专业委员会.肠道微生态与肿瘤治疗相关消化系统并发症管理中国专家共识[J].国际肿瘤学杂志,2022,49(12):711-717.
[113] Wang J, Liang J, He M, et al. Chinese expert consensus on intestinal microecology and management of digestive tract complications related to tumor treatment (version 2022). J Cancer Res Ther,2022;18(7):1835-44.
[114] Wang Q, Lei Y, Wang J, et al. Expert consensus on the relevance of intestinal microecology and hematopoietic stem cell transplantation. Clin Transplant,2024,;38(1):e15186.
[115] Guo Z, He M, Shao L, et al. The role of fecal microbiota transplantation in the treatment of acute graft-versus-host disease. J Cancer Res Ther, 2024,20(7):1964-1973.
[116] Wang Q, He M, Liang J, et al.Chinese guidelines for integrated diagnosis and treatment of intestinal microecology technologies in tumor application (2024 Edition). J Cancer Res Ther,2024,20(4):1130-1140.
[117] 中国抗癌协会肿瘤与微生态专业委员会.肠道微生态与造血干细胞移植相关性中国专家共识[J]. 国际肿瘤学杂志,2021,48(3):129-135.
[118] 中国抗癌协会肿瘤与微生态专业委员会.中国抗癌协会肠道微生态技术整合诊治指南(精简版)[J]. 中国肿瘤临床,2023,48(3):919-927.
[119] Darbandi A,Mirshekar M,Shariati A,et al.The effects of probiotics on reducing thecolorectal cancer surgery complications:A periodic review during 2007-2017.Clinical Nutrition,2020,39(8):2358-2367.
[120] Arnold M,Abnet CC,Neale RE,et al.Global Burden of 5 Major Types of Gastrointestinal Cancer.Gastroenterology,2020,159(1):335-349.
[121] Ferreira RM,Pereira-Marques J,Pinto-Ribeiro I,et al.Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota.Gut,2018,67(2):226-236.
[122] Ma C,Han M,Heinrich B,et al.Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells.Science,2018,360(6391):eaan5931.
[123] Hartmann N,Kronenberg M,Cancer immunity thwarted by the microbiome.Science,2018,360(6391):858-859.
[124] Coker OO,Nakatsu G,Dai RZ,et al.Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer.Gut,2019,68(4):654-662.
[125] Jin C,Lagoudas GK,Zhao C,et al.Commensal Microbiota Promote Lung Cancer Development via γδ T Cells.Cell,2019,176(5):998-1013.e16.
[126] Saus E,Iraola-Guzmán S,Willis JR,et al.Microbiome and colorectal cancer:Roles in carcinogenesis and clinical potential.Molecular Aspects of Medicine,2019,69:93-106.
[127] Yang J,LiD,Yang Z,et al.Establishing high-accuracy biomarkers for colorectal cancer by comparing fecal microbiomes in patients with healthy families.Gut Microbes,2020,11(4):1-12.
[128] Thomas AM,ManghiP,Asnicar F,et al.Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with cholinedegradation.Nature Medicine,2019,25(4):667-678.
[129] Sittipo P,Shim JW,Lee YK,et al.Microbial Metabolites Determine Host Health and the Status of Some Diseases. International Journal of Molecular Sciences,2019,20 (21):26.
[130] Sittipo P,Lobionda S,Lee YK,et al.Intestinal microbiota and the immune system in metabolic diseases. Journal of Microbiology,2018,56 (3):154-162.
[131] ZITVOGEL L, DAILLèRE R, ROBERTI M P, et al. Anticancer effects of the microbiome and its products.Nature reviews Microbiology,2017,15(8): 465-78.
[132] WANG Y, SUN L, CHEN S, et al. The administration of Escherichia coli Nissle 1917 ameliorates irinotecan-induced intestinal barrier dysfunction and gut microbial dysbiosis in mice.Life sciences, 2019,231:116529.
[133] LIU T, WU Y, WANG L, et al. A More Robust Gut Microbiota in Calorie-Restricted Mice Is Associated with Attenuated Intestinal Injury Caused by the Chemotherapy Drug Cyclophosphamide.mBio,2019,10(2): e02903-18
[134] Reyna-Figueroa J, Barrón-Calvillo E, García-Parra C, et al. Probiotic Supplementation Decreases Chemotherapy-induced Gastrointestinal Side Effects in Patients With Acute Leukemia.J J Pediatr Hematol Oncol, 2019,41(6):468-472.
[135] ZHANG S, YANG Y, WENG W, et al. Fusobacterium nucleatum promotes chemoresistance to 5-fluorouracil by upregulation of BIRC3 expression in colorectal cancer.J Exp Clin Cancer Res, 2019, 38(1): 14.
[136] Flynn M, Dooley J. The microbiome of the nasopharynx. J Med Microbiol,2021,70(6) :001368
[137] Akimbekov NS, Digel I, Yerezhepov AY, et al. Nutritional factors influencing microbiota-mediated colonization resistance of the oral cavity: A literature review. Front Nutr,2022,9:1029324.
[138] Freire M, Nelson KE, Edlund A. The Oral Host-Microbial Interactome: An Ecological Chronometer of Health. Trends Microbiol,2021,29(6): 551-561.
[139] Kitamoto S, Nagao-Kitamoto H, Jiao Y, et al. The Intermucosal Connection between the Mouth and Gut in Commensal Pathobiont-Driven Colitis. Cell,2020,182(2): 447-462.e14.
[140] Zheng W, Zhao S, Yin Y, et al. High-throughput, single-microbe genomics with strain resolution, applied to a human gut microbiome. Science,2022,376(6597): eabm1483.
[141] Khoruts A,Staley C,Sadowsky MJ.Faecal microbiota transplantation for Clostridioides difficile:mechanisms and pharmacology.Nat Rev Gastroenterol Hepatol,2021,18(1):67-80.
[142] Liu X,Tong X,Zou Y,et al.Mendelian randomization analyses support causal relationships between blood metabolites and the gut microbiome.Nature Genetics,2022,54(1):52-61.
[143] Zitvogel L,Ma Y,Raoult D,et al.The microbiome in cancer immunotherapy:Diagnostic tools and therapeutic strategies.Science,2018,359(6382):1366-1370.
[144] Innes AJ, Mullish BH, Fernando F, et al. Faecal microbiota transplant: a novel biological approach to extensively drug-resistant organism-related non-relapse mortality. Bone Marrow Transplant, 2017, 52(10): 1452-1454.
[145] Biliński J, Grzesiowski P, Muszyński J, et al. Fecal microbiota
[146] Kaito S, Toya T, Yoshifuji K, et al. Fecal microbiota transplantation with frozen capsules for a patient with refractory acute gut graft-versus-host disease. Blood Adv, 2018, 2(22): 3097-3101.
[147] Liu Y, Zhao Y, Qi J,et al. Fecal microbiota transplantation combined with ruxolitinib as a salvage treatment for intestinal steroid-refractory acute GVHD. Exp Hematol Oncol, 2022, 11(1):96.
[148] Wang J, Liang J, He M,et al.Chinese expert consensus on intestinal microecology and management of digestive tract complications related to tumor treatment (version 2022). J Cancer Res Ther,2022,18(7):1835-1844.