罕见突变及罕见肿瘤研究进展篇(一)——《中国恶性肿瘤学科发展报告(2024)》

概述


恶性肿瘤是威胁我国人民健康的重要疾病。罕见肿瘤或携带罕见可干预变异的肿瘤患者,是临床关注的弱点和临床研究的缺口,其诊断和治疗均存在巨大挑战。中国国家癌症中将年发病率低于2.5/10万的癌症定义为罕见肿瘤。但我国人口基数庞大,从整体上看,罕见突变及罕见肿瘤并不罕见,近几年已得到政府及医学界的重视。罕见突变及罕见肿瘤专委会聚焦于罕见突变和罕见肿瘤的分子诊断和药物研发,建立肿瘤大数据库的和肿瘤防治体系,扩大社会各界对这类疾病的认知及关注。本文对最新的罕见突变及罕见肿瘤诊疗相关内容的进展进行总结和展望,旨在为临床工作者及科研工作者提供借鉴和参考,促进社会各界对社罕见突变及罕见肿瘤的关注。

2. 罕见突变及罕见肿瘤诊疗研究进展


2.1 罕见驱动基因突变NSCLC的治疗进展


近年来,针对非小细胞肺癌(NSCLC)罕见驱动基因变异的治疗研究取得显著突破。在ALK融合领域,2024年ASCO年会公布CROWN研究5年随访显示,第三代ALK抑制剂洛拉替尼中位PFS(mPFS)仍未达到,5年PFS率高达60%,显著优于克唑替尼(8%),同时展现出卓越的颅内控制能力(5年无颅内进展率92%)[1]。在ALK阳性NSCLC的围手术期治疗中,阿来替尼新辅助治疗III期可切除患者的ALNEO-GOIRC-01-2020研究表明,其主要病理缓解(MPR)率达39%,完全病理缓解(pCR)率17%,且耐受性良好[2]。LORIN研究显示,洛拉替尼诱导治疗使76.9%患者实现MPR/pCR,71.4%不可切除III期患者成功转化手术[3]。第四代ALK抑制剂NVL-655展现出良好的耐受性,ORR达38%,特别是在洛拉替尼耐药人群中,复合突变患者ORR达64%[4]。


ROS1重排的一线治疗选择逐渐丰富,首个获得NMPA批准的国产ROS1抑制剂安奈克替尼在2024年WCLC大会更新的数据显示[5],ROS1融合阳性患者的ORR达到81.08%,中位PFS达到17.25个月。TRIDENT-1研究显示[6],瑞普替尼治疗初治的ROS1融合阳性患者,ORR达到79%,中位PFS长达35.7个月。他雷替尼作为首个ROS1/NTRK双靶点抑制剂在在中国开展的临床II期TRUST-I研究的结果显示在初治患者中显示出90.6% 确认客观缓解率cORR,疾病控制率(DCR)更是达到95.3%[7]。


RET融合特异性抑制剂领域,塞普替尼的LIBRETTO-431研究探索了靶向治疗与化疗联合免疫检查点抑制剂在RET+ NSCLC患者颅内(IC)的疗效,结果显示无论基线是否脑转移,与对照组相比,塞普替尼可延缓晚期RET+ NSCLC患者的IC病灶进展,并取得更高的IC反应率[8]。针对METex14 跳跃突变的MET-TKI目前全球已有五款获批,2024 年 ELCC 大会和 ASCO 大会公布了赛沃替尼和伯瑞替尼的一线治疗数据,进一步证实 METex14 跳突 NSCLC 患者一线接受 MET-TKI 治疗获益明确。


KRAS突变治疗领域迎来联合疗法突破,多项联合方案治疗 KRAS G12C 突变 NSCLC 的研究[9-11],伊夫替尼联合D-1553一线治疗KRAS G12C突变NSCLC患者的ORR达90.3%[9]。另外KRYSTAL-12 研究公布最新数据,结果显示 Adagrasib 治疗既往经治 KRAS+ NSCLC 的 ORR 为 32%,中位 PFS 为 5.5 个月[12]。HER2突变型NSCLC的治疗范式被ADC药物改写,2024年WCLC公布 DESTINY-Lung02 研究结果提示德曲妥珠单抗在经治后 HER2 突变 NSCLC 患者中有良好的获益风险比[13]。Beamion LUNG-1研究探索Zongertinib治疗HER2突变NSCLC最新数据显示ORR达到71%,CNS病灶的客观缓解率为37%,安全性良好[14]。


2.2 黑色素瘤诊断和治疗领域进展


2.2.1 黑色素瘤诊断领域进展


2024年,黑色素瘤诊断领域在多学科技术融合下取得了显著进展,尤其在早期检测、精准分型和预后评估方面:


2.2.1.1 AI与影像诊断的深化应用


2024年1月,美国食品药品监督管理局(FDA)正式授权DermaSensor用于黑色素瘤的筛查。DermaSensor作为一种便携式无线装置,运用光谱技术深入细胞和亚细胞层面探测异常,并通过精密算法进行分析开创了以非侵入手段借助人工智能(AI)技术诊断皮肤癌(涵盖黑色素瘤、基底细胞癌及鳞状细胞癌)的先河[15]。具体应用体现在:①多模态AI模型:新型AI系统整合皮肤镜、全身摄影(TBP)和光学相干断层扫描(OCT)数据,显著提升诊断灵敏度(达95%以上),减少对非典型病变的误诊[16]。②实时动态监测:便携式AI设备(如智能手机附件)可通过连续跟踪皮损形态变化,预警潜在恶性转化,尤其适用于高危人群监测[17]。③病理图像分析:深度学习算法在组织病理切片中自动识别微浸润、核异型性等特征,辅助病理科医生缩短诊断时间[18]。


2.2.1.2 液体活检技术的突破


ctDNA甲基化标记物:发现黑色素瘤特异性甲基化谱(如TFPI2和RASSF1A基因),可在早期(Ⅰ期)患者血液中检出,灵敏度提升至70%[19]。


外泌体蛋白组学:通过分析肿瘤来源外泌体的蛋白标志物(如PD-L1、S100B),实现无创监测转移和耐药性[20]。


循环肿瘤细胞(CTC)分型:微流控芯片技术结合单细胞测序,可捕获并分析CTC的基因表达特征,指导个体化治疗[21]。


2.2.1.3 分子病理与基因组学整合


多基因Panel检测:基于NGS的靶向测序覆盖BRAF、NRAS、KIT、TERT等驱动基因,同时检测免疫治疗相关标志物(如肿瘤突变负荷/TMB),为靶向及免疫治疗提供精准依据[22]。


空间转录组学:解析肿瘤微环境中不同区域的基因表达异质性,揭示免疫逃逸机制,助力新型联合疗法开发[23]。


2.2.1.4 新型成像技术的临床转化


共聚焦显微镜(RCM)智能化:结合AI的实时RCM成像可在体评估表皮-真皮交界结构,减少不必要的活检[24]。


多光子荧光寿命成像(FLIM):通过代谢产物(如NADH)的荧光信号差异,区分良性痣与早期黑色素瘤[25]。


全身PET/CT优化:新型放射性示踪剂(如¹?F-FDG联合??Ga-FAPI)提高微小转移灶检出率[26]。


2.2.1.5 免疫微环境评估工具


多重免疫荧光(mIF)技术:同时检测肿瘤浸润淋巴细胞(TILs)、PD-1/PD-L1表达及巨噬细胞极化状态,量化“免疫热/冷肿瘤”,预测免疫治疗响应[27]。


数字病理整合平台:AI驱动的空间分析工具(如HalioDx)自动生成免疫评分,辅助临床决策[28]。


2.2.1.6 早期筛查与预防策略


高危人群多基因风险评分:基于GWAS数据开发的多基因模型(涵盖MC1R、CDKN2A等位点),结合UV暴露史,优化筛查优先级[29]。


mRNA疫苗预防试验:针对携带高危基因突变个体的预防性疫苗(如靶向MART-1抗原)进入Ⅰ期临床试验[30]。


2.2.2 黑色素瘤治疗领域进展


2024年黑色素瘤的治疗领域在新辅助治疗、辅助治疗和系统治疗方面均取得了重要进展,尤其是在免疫治疗、靶向治疗及联合策略的优化上:


在新辅助治疗进展方面,免疫治疗主导地位强化。KEYNOTE-716更新的III期数据显示[31],IIB/IIC期黑色素瘤患者术前使用帕博利珠单抗新辅助治疗,显著提高病理完全缓解率(pCR)至45%,且耐受性良好。术后无复发生存期(RFS)延长至24个月以上。NADINA的III期试验更新数据[32]:纳武利尤单抗(NIVO)+伊匹木单抗(IPI)的方案显示出较高的pCR率和微观病理完全缓解率(MPR),同时展现出显著的生存获益。与NIVO单药相比,双免治疗组的1年无事件生存期(EFS)显著提高。OpACIN-neo改良剂量方案(NIVO+IPI)的II期试验显示[33],III期患者pCR达50%,且毒性显著低于传统剂量,成为高危患者的优选方案。另一方面,靶向治疗适应症逐渐扩展。针对BRAF V600突变患者的新辅助治疗,COMBI-Neo(达拉非尼+曲美替尼)III期试验显示[34]:术后病理缓解率(pRR)达78%,且术后复发风险降低60%。但需警惕耐药性及术后长期管理。瘤内注射疗法应用方面,PIVOTAL研究:采用抗体-细胞因子融合蛋白Daromun瘤内注射的新辅助治疗方法,结果显示[35]:其能显著提高RFS和无远处转移生存(DMFS),主要毒副反应局限于局部,揭示了局部溶瘤治疗在黑色素瘤新辅助治疗中的新潜力。另外,肿瘤突变负荷(TMB)和IFN-γ基因特征被验证为预测免疫治疗反应的关键生物标记物,推动精准新辅助策略[36]。


在辅助治疗方面,双免疫方案进一步巩固地位,CheckMate 915数据表明[37]:NIVO+IPI(双免疫)对比NIVO单药治疗III/IV期术后患者,5年总生存率(OS)达75%(单药组68%),但双免疫组3-4级毒性较高(35%对比15%),需严格管理。RELATIVITY-047公布结果[38]:Relatlimab(LAG-3抑制剂)+NIVO获批用于术后高危患者,2024年更新数据显示3年RFS率提升至72%(NIVO单药63%),成为首个LAG-3靶向辅助疗法。其次,靶向治疗疗程延长。COMBI-AD长期随访数据表明[34]:达拉非尼+曲美替尼辅助治疗BRAF突变患者的7年OS率达71%,显著优于安慰剂组(45%),但需关注长期毒性(如继发皮肤癌风险)。另外,基于肿瘤新抗原的个体化mRNA-4157疫苗联合帕博利珠单抗的II期试验显示[39],术后复发率降低40%,可能成为未来精准辅助治疗方向。最后,通过ctDNA监测微小残留病灶(MRD)动态监测与降阶梯治疗,指导高风险患者辅助治疗强度调整,避免过度治疗[40]。


晚期一线免疫治进展方面:特瑞普利单抗:MELATORCH公布结果[41],特瑞普利单抗一线治疗晚期黑色素瘤患者,相较于达卡巴嗪,显著延长无进展生存期(PFS),降低疾病进展或死亡风险29.2%,且安全性良好。作为首个针对中国晚期黑色素瘤患者一线治疗的注册III期研究,2024年8月,国家药品监督管理局(NMPA)正式受理了特瑞普利单抗用于不可切除或转移性黑色素瘤一线治疗的新适应症上市申请。纳武利尤单抗:CheckMate 067试验的10年生存期结果公布[42],NIVO+IPI或NIVO单药,较单独使用IPI治疗晚期黑色素瘤,改善了患者生存率。帕博利珠单抗:KEYNOTE-006公布了10年长期随访结果[43],与IPI相比,帕博利珠单抗在未接受过IPI治疗的晚期黑色素瘤患者中显示出更优的疗效,持续显示出改善OS和PFS的优势。双免疫升级版:Opdualag(NIVO+Relatlimab)一线治疗晚期患者的III期试验显示[44],中位PFS达15.7个月(NIVO单药10.6个月),且肝毒性显著低于CTLA-4组合。双特异性抗体:2024年9月,FDA授予IBI363(PD-1/IL-2α双特异性抗体融合蛋白)治疗晚期黑色素瘤的快速通道资格。


生物治疗取得新突破:肿瘤浸润淋巴细胞(TIL)疗法:Lifileucel获美国FDA加速批准用于晚期PD-1耐药患者,2024年真实世界数据显示客观缓解率(ORR)达35%,CR达12%,部分患者持续缓解超2年[45]。CAR-T细胞疗法:针对黑色素瘤相关抗原(如PRAME、NY-ESO-1)的CAR-T在I期试验中显示部分缓解,但需克服实体瘤微环境障碍[46]。个体化mRNA疫苗:BNT111的II期临床试验积极顶线数据分析显示[47],试验达成主要终点,与西米普利单抗(Cemiplimab)联合疗法能够显著改善无法切除的晚期黑色素瘤患者的ORR。


靶向治疗方面的进展:妥拉美替尼:中国NMPA批准了妥拉美替尼用于PD-1/PD-L1治疗失败的NRAS突变的晚期黑色素瘤患者,这是全球首个且唯一获批针对NRAS突变晚期黑色素瘤适应证的MEK抑制剂。EBIN研究强调:在未经选择的BRAF-V600E/K突变的患者中,BRAF抑制剂/MEK抑制剂序贯或联合应用的PFS没有显著差异,但特定的患者群体,特别是LDH高水平和肝转移患者,可能从序贯治疗中获益。


BRAF/MEK抑制剂耐药对策:SHP2抑制剂(RMC-4630)联合达拉非尼/曲美替尼:针对MAPK通路再激活,II期试验ORR达55%。ERK抑制剂(Ulixertinib):对BRAF/MEK耐药患者ORR为28%,中位PFS 4.1个月[48]。MEK抑制剂联合CDK4/6抑制剂:联合应用逆转MAPK通路耐药,早期临床试验显示疾病控制率提升。


溶瘤病毒联合疗法探索:T-VEC+帕博利珠单抗:III期试验显示ORR提升至52%,CR率33%,尤其对PD-L1阴性患者有效[49]。溶瘤病毒+特瑞普利单抗:Ib期研究探讨了在高危肢端黑色素瘤新辅助治疗中的疗效,取得了高达77.8%的pCR率,1年RFS率和1年EFS率分别为85.2%和83%。


2.3 肺癌EGFR非经典突变诊治进展


非小细胞肺癌(NSCLC)是全球癌症相关死亡的主要原因之一[50],其中表皮生长因子受体(EGFR)突变是亚洲人群中最常见的驱动基因变异,约占所有NSCLC患者的40%-60%[51]。自2004年第一代EGFR酪氨酸激酶抑制剂(TKI)吉非替尼获批以来,EGFR突变阳性患者的治疗模式已从传统化疗全面转向精准靶向治疗[52]。然而,EGFR突变具有高度异质性,除经典突变(19号外显子缺失和21号外显子L858R点突变)外,约10%-20%的病例为非经典突变,包括18号外显子点突变(如G719X)、20号外显子插入(Exon20ins)、21号外显子L861Q及复合突变等[52]。这些突变因结构特征和功能差异对现有TKI的敏感性显著不同,导致临床疗效参差不齐。并且,随着二代测序技术(NGS)的广泛应用,越来越多的EGFR非经典突变在临床中被发现,成为当前精准治疗的重要挑战。


2.3.1 非经典敏感类突变


非经典敏感突变主要包括:G719X点突变、S768I点突变、L861Q点突变等,对第一代EGFR TKIs敏感性较低,但对第二代和第三代EGFR TKIs更敏感。经典的LUX-Lung系列研究的汇总分析已证实第二代EGFR TKI阿法替尼在此类人群的疗效[53]。ACHILLES研究则进一步针对携带EGFR非经典敏感突变(如G719X或L861Q,以及复合突变)的晚期NSCLC患者,头对头比较了阿法替尼与化疗的疗效与安全性[54]。研究共纳入109名患者,患者以2:1的比例随机分配至阿法替尼组或化疗组。研究结果显示:阿法替尼组的中位PFS显著长于化疗组(10.6个月 vs. 5.7个月),死亡或疾病进展的风险比为0.42(95% CI:0.26-0.69)。在安全性方面:阿法替尼组与化疗组的总体不良事件发生率相似,未发现新的安全性信号。然而,两组的毒性特征有所不同。阿法替尼组中更多患者出现腹泻、甲沟炎、皮疹和黏膜炎等不良反应。该研究进一步证实了阿法替尼在此人群的中疗效。2期非随机UNICORE研究也评估了第三代EGFR TKI奥希替尼在携带有EGFR G719X、S768I 和L861Q的晚期NSCLC人群中的疗效[55]。总体来看,在奥希替尼标准剂量治疗下,总体的客观缓解率(ORR)为55%,中位无进展生存时间(PFS)为9.4个月,中位总生存时间(OS)尚未达到,也初步显示奥希替尼在这一患者群体中显示出良好的疗效和安全性,有望改善患者的预后和生活质量。2021年Nature杂志根据EGFR结构功能分类,进一步对EGFR突变分类进行优化,可分为四类:经典样突变(Classical-like)、T790M样突变(T790M-like)、外显子20环插入突变(Exon 20 loop insertion)和PACC突变(P-loop and αC-helix compression)[56]。PACC突变主要发生在EGFR基因的外显子18-21,包括G719X、L747X、S768I、L792X和T854I等多种亚型,约占EGFR突变的12%。PACC突变会导致ATP结合口袋变形,对大多数TKI不敏感,因此对传统EGFR-TKI治疗的反应较差。在2024年世界肺癌大会(WCLC)上公布的FURTHER研究中[57],评估了伏美替尼单药一线治疗EGFR PACC突变NSCLC患者的疗效和安全性。患者随机分为两组,分别接受伏美替尼160 mg QD和240 mg QD治疗。结果显示:240 mg 组的ORR为81.8%,160 mg 组的ORR为47.8%。安全性方面,伏美替尼最常见的治疗相关不良事件是腹泻、皮疹、口腔炎和肝酶升高,大多数为1-2级,未观察到因治疗相关不良事件而停止治疗的情况。伏美替尼在EGFR PACC突变NSCLC患者中显示出良好的疗效和安全性,特别是在一线治疗中。其高脑渗透性和对CNS转移的显著疗效使其成为PACC突变NSCLC患者的新希望。


2.3.2 20号外显子插入突变(Exon20ins)


EGFR exon20ins构成了NSCLC的另一独特且非典型的EGFR突变亚群,其特征是对第一代和第二代EGFR TKIs具有原发性耐药性,且患者预后较差[52]。由于EGFRexon20ins的ATP结合口袋与野生型蛋白相似,这使得它们难以被传统的EGFR TKIs选择性靶向,因此针对这一患者群体的治疗进展一直有限。然而,随着对机制理解的深入和新治疗策略的开发,这一状况得到了改善。莫博赛替尼在2021年获得了加速批准用于铂类治疗后的患者[58]。但在随后开展的EXCLAIM-2的3期研究中,莫博赛替尼与化疗相比,未能显著改善患者中位PFS(9.6个月 vs. 9.6个月;HR:1.04;95%:0.77-1.39)[59]。目前,莫博赛替尼已全球退市。此外,正在研究几种全新针对EGFR exon20ins的高选择性EGFR TKIs,包括舒沃替尼[60]、zipalertinib[61]、YK-029A[62]等已显示出令人鼓舞的疗效。其中,舒沃替尼作为新型的国产EGFR TKI,已被NMPA批准用于EGFR exon20ins晚期NSCLC的后线治疗。YK-029A是一种新型的第三代TKI,专门针对EGFR exon20ins的NSCLC患者。由王洁教授牵头完成的一项多中心、剂量递增和扩展的I期临床试验显示:在26例可评估疗效的未经系统治疗的EGFR ex20ins突变晚期NSCLC患者中,ORR达到73.1%,中位PFS为9.3个月,6个月的PFS率为72.8%,9个月的PFS率为63.7%[62]。迄今为止,在NSCLC中已识别出超过100种独特的EGFR exon20ins突变亚型,并且插入位点与对EGFR TKIs的不同治疗响应密切相关。因此,开发新的EGFR exon20ins TKIs应优先考虑具有良好耐受性和能有效靶向广泛突变亚型的化合物。


埃万妥单抗是一种新型的EGFR-MET双特异性抗体,可阻断配体诱导的激活并促进受体降解,可同时抑制EGFR/MET通路的活化[63]。此外,埃万妥单抗的Fc区域与巨噬细胞和单核细胞相互作用,可诱导抗体依赖性细胞毒性。埃万妥单抗已在携带各种EGFR突变的NSCLC中显示出抗肿瘤活性,包括EGFR exon20ins的NSCLC患者,成为这些患者的另一种治疗选择。由周彩存教授牵头完成的在III期PAPILLON临床试验发现:在未经治疗的、携带EGFR exon20ins的局部晚期或转移性NSCLC患者中,埃万妥单抗联合化疗组与单独化疗组相比,中位PFS显著延长至11.4个月,而单独化疗组为6.7个月(HR = 0.40, 95%CI: 0.30-0.53, P < 0.0001);联合治疗组的ORR为73%,而单独化疗组的ORR为47%;联合治疗组的OS数据尚未成熟,但已显示出优于单独化疗组的趋势[64]。基于PAPILLON试验的突破性成果,埃万妥单抗联合化疗已成为EGFR exon20insNSCLC患者的一线治疗新标准,已被FDA和NMPA批准用于EGFR exon20ins晚期NSCLC的一线治疗。未来的研究将进一步探索这一治疗方案在不同患者亚群中的应用,以及与其他治疗方案的联合使用,以期进一步提高患者的生存率和生活质量。Becotarug是一种新型抗EGFR抗体,其靶点亲和力比上一代抗体西妥昔单抗高六倍。在张力教授牵头完成的在I期试验中,先前接受过治疗的EGFR exon20ins的晚期NSCLC患者接受becotarug联合奥希替尼治疗的ORR为36.4%,中位PFS为8.2个月。在各种EGFRexon20ins亚型患者中均观察到反应,且该联合治疗显示出潜在的CNS活性(颅内疾病控制率为87.5%,确认的颅内ORR为25.0%)[65]。目前,几项III期试验正在评估这些新型EGFR TKIs作为单药治疗(sunvozertinib、YK-029A、furmonertinib)或与化疗联用(zipalertinib)或奥希替尼联合becotarug作为一线治疗用于晚期EGFR exon20insNSCLC患者的疗效与安全性。这些试验的结果可能会为这一患者群体提供更多治疗选择,针对EGFR exon20ins群体,未来的治疗策略可能包括抗EGFR单克隆抗体联合TKIs、TKIs与化疗的联合以及单药TKIs。此外,考虑到lazertinib联合埃万妥单抗在携带常见敏感EGFR突变的患者中显示出的令人鼓舞的疗效[66],新型EGFR TKIs联合埃万妥单抗在EGFR exon20ins患者中也值得研究。未来的研究需要平衡临床获益、生活质量和给药便利性,以协助指导、制定未来的治疗决策。


2.4家族性腺瘤性息肉病的化学预防药物进展


家族性腺瘤性息肉病(familial adenomatous polyposis,FAP)是一种由APC基因胚系突变引起的常染色体显性遗传疾病,表现为高发的结直肠腺瘤和接近100%的终生结直肠癌风险[67, 68]。目前主要治疗方法为内镜监测和预防性手术切除病变肠段;但这些方法存在诸多弊端,如术后易发生储袋炎、吻合口狭窄、继发硬纤维瘤等[69, 70],严重影响患者的生活质量。因此,FAP化学预防药物的研究已成为重要方向,旨在延缓疾病进展、推迟手术时机、减缓结肠外疾病发展以及降低手术相关并发症的发生率[71]。


非甾体类抗炎药是最早被研究用于FAP化学预防的药物。其中,舒林酸作为一种非选择性环氧化酶(cyclooxygenase,COX)抑制剂,曾被寄予厚望,但研究发现其对FAP患者结肠息肉的抑制效果有限,停药后息肉会再次生长,且长期使用可能带来胃肠道不良反应[72, 73]。选择性COX-2抑制剂塞来昔布在儿童和成人的研究中显示出对FAP患者结肠息肉的抑制作用[74, 75],但其长期使用可能增加心血管疾病风险[76]。此外,依氟鸟氨酸联合舒林酸的组合疗法曾被研究用于FAP的化学预防,但结果显示其并不能有效延缓疾病进展[77]。


二甲双胍作为一种常用的降糖药,近年来被发现可能对FAP具有潜在的化学预防作用[78]。研究发现,二甲双胍能够通过激活腺苷酸活化蛋白激酶信号通路,抑制细胞增殖和促进细胞凋亡,从而对FAP患者的息肉生长产生抑制作用[79]。此外,二十碳五烯酸作为一种ω-3脂肪酸,也被研究用于FAP的化学预防[80]。二十碳五烯酸具有抗炎和调节细胞代谢的作用,能够通过抑制炎症反应和调节细胞内脂质代谢,减少息肉的形成和发展[81]。


姜黄素是从姜黄中提取的一种天然化合物,具有抗氧化、抗炎和抗肿瘤等多种生物活性。研究表明,姜黄素能够通过多种途径抑制FAP患者息肉的生长,包括抑制细胞增殖、诱导细胞凋亡、抑制炎症反应等[82]。此外,盐酸小檗碱(黄连素)也显示出一定的化学预防潜力。黄连素能够通过调节细胞代谢和抑制细胞增殖,对FAP患者的息肉生长产生抑制作用[83]。


哺乳动物雷帕霉素靶蛋白(mammalian target Of rapamycin,mTOR)通路在FAP的发生发展中起重要作用,雷帕霉素作为一种mTOR抑制剂,被研究用于FAP的化学预防。目前已有单病例报告使用雷帕霉素进行FAP的化学预防,但其不良反应明显,尚未进行大规模临床研究[84]。此外,表皮生长因子受体抑制剂厄洛替尼联合COX-2抑制剂舒林酸的疗法也显示出对FAP患者十二指肠息肉负荷的减轻作用,但其长期效果和安全性仍需进一步验证[85]。


2.5 肛管鳞癌诊治进展


肛管癌是一种罕见的消化道恶性肿瘤,多见于女性,占所有恶性肿瘤中的0.3%,占消化道恶性肿瘤中的3%[86]。肛管癌病理类型多数为鳞癌,极少部分为腺癌、黑色素瘤、肉瘤和神经内分泌肿瘤。超过90%的肛管癌患者与慢性人乳头瘤病毒(human papillomavirus,HPV)感染有关,其中HPV16型和18型最为常见[87, 88]。该病的诊断主要依赖病理活检,而影像学检查如PET-CT和MRI也可用于评估肿瘤的分期和淋巴结转移情况[89]。肛管癌的治疗取得了一定的进展,除了既往的手术及放化疗外,局部进展期或转移性肛管鳞癌的治疗在靶向治疗、免疫治疗和新型药物治疗方面也有一定进展。


手术曾是肛管鳞癌的主要治疗手段,但目前仅作为辅助治疗或放化疗失败后的补救措施。对于局限性早期肛管鳞癌(如T1N0),局部切除术可作为首选,但需确保阴性切缘。对于局部进展期或晚期患者,腹会阴联合切除术仍是一种选择,但通常用于放化疗失败后的挽救性治疗[90, 91]。放化疗是目前肛管鳞癌的主要治疗模式,尤其适用于局限性肛管鳞癌(美国癌症联合委员会分期Ⅰ~Ⅲ期)。常用的化疗方案包括5-氟尿嘧啶联合丝裂霉素或顺铂,近年来卡培他滨等药物也被应用于同步放化疗中[92, 93]。调强适形放射治疗等先进放疗技术的应用进一步提高了化疗方案的治疗效果并降低了副作用。免疫治疗是近年来肛管鳞癌治疗的重要突破方向[94]。针对程序性死亡受体1(programmed cell death protein 1,PD-1)/程序性死亡受体-配体1(programmed cell death ligand 1,PD-L1)的免疫检查点抑制剂已在多项研究中显示出良好的疗效和耐受性。例如,NCI9673研究显示,纳武利尤单抗单药治疗的客观缓解率达24%,且未报告严重不良事件[95]。此外,帕博利珠单抗在既往接受过治疗的晚期肛管鳞癌患者中也显示出一定的疗效[96]。


【主编】


巴 一   中国医学科学院北京协和医院


【副主编】(按姓氏拼音排序)


崔久嵬   吉林大学第一医院


任秀宝   天津医科大学肿瘤医院


周彩存   上海市东方医院


张 俊   上海交通大学医学院附属瑞金医院


张 力   中山大学肿瘤防治中心


【编委】


王晰程   中国医学科学院北京协和医院


梁婷婷   吉林大学第一医院


李孝远  中国医学科学院北京协和医院


陈小燕   中国医学科学院北京协和医院


周 斐   上海市东方医院


赵 珅   中山大学肿瘤防治中心


田 潇   天津医科大学肿瘤医院



参考文献(向上滑动阅览)


[1]Solomon BJ, Liu G, Felip E, et al. Lorlatinib Versus Crizotinib in Patients With Advanced ALK-Positive Non-Small Cell Lung Cancer: 5-Year Outcomes From the Phase III CROWN Study[J]. J Clin Oncol, 2024, 42(29): 3400-3409.


[2]Leonetti A, Boni L, Gnetti L, et al. MA01.03 Neoadjuvant Alectinib in Potentially Resectable Stage III ALK-Positive NSCLC: Interim Analysis of ALNEO-GOIRC-01-2020 Phase II Trial[J]. Journal of Thoracic Oncology, 2024, 19(10, Supplement): S52.


[3]Zhong WZ, Zhang C, Yang Y, et al. P3.08F.01 Interim Analysis of a Phase 2 Prospective Trial of Induction Lorlatinib in Locally Advanced ALK-Positive NSCLC (LORIN)[J]. Journal of Thoracic Oncology, 2024, 19(10): S337-S338.


[4]Drilon AE, Lin JJ, Johnson ML, et al. 1253O Phase I/II ALKOVE-1 study of NVL-655 in ALK-positive (ALK+) solid tumours[J]. Annals of Oncology, 2024, 35: S802-S803.


[5]Lu S, Pan H, Wu L, et al. MA06.04 Unecritinib in Patients with ROS1 Positive Advanced Non-Small Cell Lung Cancer: Updated Results from a Phase II Trial[J]. Journal of Thoracic Oncology, 2024, 19(10): S73-S74.


[6]Drilon A, Camidge DR, Lin JJ, et al. Repotrectinib in ROS1 Fusion-Positive Non-Small-Cell Lung Cancer[J]. N Engl J Med, 2024, 390(2): 118-131.


[7]Li W, Xiong A, Yang N, et al. Efficacy and safety of taletrectinib in patients with advanced or metastatic ROS1+ non–small cell lung cancer: The phase 2 TRUST-I study[J]. 2024, 42(16_suppl): 8520-8520.


[8]Perol M, Goto K, Solomon BJ, et al. Intracranial outcomes of 1L selpercatinib in advanced RET fusion-positive NSCLC: LIBRETTO-431 study[J]. 2024, 42(16_suppl): 8547-8547.


[9]Song Z, Li X, Lin R, et al. Safety and efficacy of ifebemtinib (IN10018) combined with D-1553 in non-small-cell lung cancer (NSCLC) with KRAS G12C mutation: Results from a phase Ib/II study[J]. 2024, 42(16_suppl): 8605-8605.


[10]Burns TF, Dragnev KH, Fujiwara Y, et al. Efficacy and safety of olomorasib (LY3537982), a second-generation KRAS G12C inhibitor (G12Ci), in combination with pembrolizumab in patients with KRAS G12C-mutant advanced NSCLC[J]. 2024, 42(16_suppl): 8510-8510.


[11]Yoshioka H, Akamatsu H, Sakata S, et al. Final analysis of SCARLET study: A single-arm, phase II study of sotorasib plus carboplatin-pemetrexed in patients with advanced non-squamous, non-small cell lung cancer KRAS G12C mutation[J]. 2024, 42(16_suppl): 8616-8616.


[12]Mok TSK, Yao W, Duruisseaux M, et al. KRYSTAL-12: Phase 3 study of adagrasib versus docetaxel in patients with previously treated advanced/metastatic non-small cell lung cancer (NSCLC) harboring a KRASG12C mutation[J]. 2024, 42(17_suppl): LBA8509-LBA8509.


[13]Goto Y, Goto K, Kubo T, et al. 510MO Trastuzumab deruxtecan (T-DXd) in Asian patients (Pts) with human epidermal growth factor receptor 2 (HER2; ERBB2)-mutant (HER2m) metastatic non-small cell lung cancer (mNSCLC): Subgroup analysis of DESTINY–Lung02 (DL-02)[J]. Annals of Oncology, 2023, 34: S1666-S1667.


[14]Yamamoto N, Tu H, Ahn MJ, et al. LBA5 Zongertinib in patients with HER2-mutant NSCLC: Updated analysis of beamion LUNG-1[J]. Annals of Oncology, 2024, 35: S1623-S1624.


[15]Venkatesh KP, Kadakia KT, Gilbert S. Learnings from the first AI-enabled skin cancer device for primary care authorized by FDA[J]. NPJ Digit Med, 2024, 7(1): 156.


[16]The Lancet Digital H. Large language models: a new chapter in digital health[J]. Lancet Digit Health, 2024, 6(1): e1.


[17]Gaurav V, Grover C, Tyagi M, et al. Artificial Intelligence in Diagnosis and Management of Nail Disorders: A Narrative Review[J]. Indian Dermatol Online J, 2025, 16(1): 40-49.


[18]Kaur R, GholamHosseini H, Lindén M. Advanced Deep Learning Models for Melanoma Diagnosis in Computer-Aided Skin Cancer Detection[J]. Sensors (Basel), 2025, 25(3).


[19]Dai J, Jia J, Zhang F, et al. Comparative Epigenetic Profiling Reveals Distinct Features of Mucosal Melanomas Associated with Immune Cell Infiltration and Their Clinical Implications[J]. Cancer Res Commun, 2024, 4(5): 1351-1362.


[20]Kee LT, Foo JB, How CW, et al. Umbilical Cord Mesenchymal Stromal Cell-Derived Small Extracellular Vesicles Modulate Skin Matrix Synthesis and Pigmentation[J]. Int J Nanomedicine, 2025, 20: 1561-1578.


[21]Sementsov M, Ott L, Kött J, et al. Mutation analysis in individual circulating tumor cells depicts intratumor heterogeneity in melanoma[J]. EMBO Mol Med, 2024, 16(7): 1560-1578.


[22]Obinah MPB, Al-Halafi SA, Dreisig K, et al. Circulating tumor DNA for surveillance in high-risk melanoma patients: a study protocol[J]. Acta Oncol, 2025, 64: 229-233.


[23]Lapuente-Santana Ó, Kant J, Eduati F. Integrating histopathology and transcriptomics for spatial tumor microenvironment profiling in a melanoma case study[J]. NPJ Precis Oncol, 2024, 8(1): 254.


[24]Foltz EA, Witkowski A, Becker AL, et al. Artificial Intelligence Applied to Non-Invasive Imaging Modalities in Identification of Nonmelanoma Skin Cancer: A Systematic Review[J]. Cancers (Basel), 2024, 16(3).


[25]Cascio G, Aguirre KN, Church KP, et al. Transcriptional Isoforms of NAD(+) kinase regulate oxidative stress resistance and melanoma metastasis[J]. Redox Biol, 2024, 76: 103289.


[26]Bensaid C, Nabih SO, Bouzidi K, et al. Diagnosis of Atypical Medullary Metastasis in Melanoma Using (18)F-FDG PET/CT[J]. Mol Imaging Radionucl Ther, 2025, 34(1): 61-63.


[27]Surwase SS, Zhou XMM, Luly KM, et al. Highly Multiplexed Immunofluorescence PhenoCycler Panel for Murine Formalin-Fixed Paraffin-Embedded Tissues Yields Insight Into Tumor Microenvironment Immunoengineering[J]. Lab Invest, 2025, 105(1): 102165.


[28]Prelaj A, Miskovic V, Zanitti M, et al. Artificial intelligence for predictive biomarker discovery in immuno-oncology: a systematic review[J]. Ann Oncol, 2024, 35(1): 29-65.


[29]Onnekink AM, Klatte DCF, van Hooft JE, et al. Psychological Distress and Quality of Life in Families With a Germline CDKN2A Pathogenic Variant[J]. Mol Genet Genomic Med, 2025, 13(2): e70045.


[30]Geukes Foppen MH, Rohaan MW, Borgers JSW, et al. Intradermal Naked DNA Vaccination by DNA Tattooing for Mounting Tumor-Specific Immunity in Stage IV Melanoma Patients: A Phase I Clinical Trial[J]. Oncol Res Treat, 2024, 47(7-8): 351-359.


[31]Schadendorf D, Luke JJ, Ascierto PA, et al. Pembrolizumab versus placebo as adjuvant therapy in resected stage IIB or IIC melanoma: Outcomes in histopathologic subgroups from the randomized, double-blind, phase 3 KEYNOTE-716 trial[J]. J Immunother Cancer, 2024, 12(3).


[32]Blank CU, Lucas MW, Scolyer RA, et al. Neoadjuvant Nivolumab and Ipilimumab in Resectable Stage III Melanoma[J]. N Engl J Med, 2024, 391(18): 1696-1708.


[33]Reijers ILM, Menzies AM, Lopez-Yurda M, et al. Impact of personalized response-directed surgery and adjuvant therapy on survival after neoadjuvant immunotherapy in stage III melanoma: Comparison of 3-year data from PRADO and OpACIN-neo[J]. Eur J Cancer, 2025, 214: 115141.


[34]Long GV, Hauschild A, Santinami M, et al. Final Results for Adjuvant Dabrafenib plus Trametinib in Stage III Melanoma[J]. N Engl J Med, 2024, 391(18): 1709-1720.


[35]Flatz L, Wagner NB, Denisjuk N, et al. Intratumoral administration of daromun in non-melanoma skin cancer: Preliminary results from a phase 2 non-randomized controlled trial[J]. J Eur Acad Dermatol Venereol, 2025, 39(2): e147-e149.


[36]Mentucci FM, Romero Nuñez EA, Ercole A, et al. Impact of Genomic Mutation on Melanoma Immune Microenvironment and IFN-1 Pathway-Driven Therapeutic Responses[J]. Cancers (Basel), 2024, 16(14).


[37]Galle PR, Decaens T, Kudo M, et al. Nivolumab (NIVO) plus ipilimumab (IPI) vs lenvatinib (LEN) or sorafenib (SOR) as first-line treatment for unresectable hepatocellular carcinoma (uHCC): First results from CheckMate 9DW[J]. 2024, 42(17_suppl): LBA4008-LBA4008.


[38]Tawbi HA, Hodi FS, Lipson EJ, et al. Three-Year Overall Survival With Nivolumab Plus Relatlimab in Advanced Melanoma From RELATIVITY-047[J]. J Clin Oncol, 2024: Jco2401124.


[39]Weber JS, Carlino MS, Khattak A, et al. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study[J]. Lancet, 2024, 403(10427): 632-644.


[40]Varela M, Villatoro S, Lorenzo D, et al. Optimizing ctDNA: An Updated Review of a Promising Clinical Tool for the Management of Uveal Melanoma[J]. Cancers (Basel), 2024, 16(17).


[41]郭军. 特瑞普利单抗对比达卡巴嗪一线治疗晚期黑色素瘤:一项多中心、随机、对照、开放标签的III期临床研究(MELATORCH)[J]. 2024 CSCO, 2024.


[42]Wolchok JD, Chiarion-Sileni V, Rutkowski P, et al. Final, 10-Year Outcomes with Nivolumab plus Ipilimumab in Advanced Melanoma[J]. N Engl J Med, 2025, 392(1): 11-22.


[43]Long GV, Carlino MS, McNeil C, et al. Pembrolizumab versus ipilimumab for advanced melanoma: 10-year follow-up of the phase III KEYNOTE-006 study[J]. Ann Oncol, 2024, 35(12): 1191-1199.


[44]Nivolumab and Relatlimab (Opdualag): CADTH Reimbursement Review: Therapeutic area: Unresectable or metastatic melanoma [Internet]. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health; 2024 May. Available from: https://www.ncbi.nlm.nih.gov/books/NBK604839/[J].


[45]Kwong MLM, Yang JC. Lifileucel: FDA-approved T-cell therapy for melanoma[J]. Oncologist, 2024, 29(8): 648-650.


[46]Hegazy S, Karunamurthy A, John I. Diffuse PRAME Expression in Transdifferentiated Melanomas[J]. J Cutan Pathol, 2025, 52(4): 269-271.


[47]Forchhammer S, Pop OT, Hahn M, et al. Expression of the tumor antigens NY-ESO-1, tyrosinase, MAGE-A3, and TPTE in pediatric and adult melanoma: a retrospective case control study[J]. Virchows Arch, 2024, 485(2): 335-346.


[48]Buchbinder EI, Cohen JV, Tarantino G, et al. A Phase II Study of ERK Inhibition by Ulixertinib (BVD-523) in Metastatic Uveal Melanoma[J]. Cancer Res Commun, 2024, 4(5): 1321-1327.


[49]Kalsi S, Galenkamp AL, Singh R, et al. Talimogene laherparepvec (T-VEC) and Emerging Intralesional Immunotherapies for Metastatic Melanoma: A Review[J]. Curr Oncol Rep, 2024, 26(12): 1651-1663.


[50]Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(1): 17-48.


[51]Shi Y, Au JSK, Thongprasert S, et al. A Prospective, Molecular Epidemiology Study of EGFR Mutations in Asian Patients with Advanced Non-Small-Cell Lung Cancer of Adenocarcinoma Histology (PIONEER)[J]. Journal of Thoracic Oncology, 2014, 9(2): 154-162.


[52]Zhou F, Guo H, Xia Y, et al. The changing treatment landscape of EGFR-mutant non-small-cell lung cancer[J]. Nat Rev Clin Oncol, 2025, 22(2): 95-116.


[53]Yang JCH, Sequist LV, Geater SL, et al. Clinical activity of afatinib in patients with advanced non-small-cell lung cancer harbouring uncommon EGFR mutations: a combined post-hoc analysis of LUX-Lung 2, LUX-Lung 3, and LUX-Lung 6[J]. Lancet Oncol, 2015, 16(7): 830-838.


[54]Miura S, Tanaka H, Misumi T, et al. LBA66 Afatinib versus chemotherapy for treatment-naïve non-small cell lung cancer with a sensitizing uncommon epidermal growth factor receptor mutation: A phase III study (ACHILLES/TORG1834)[J]. Annals of Oncology, 2023, 34: S1310-S1311.


[55]Okuma Y, Kubota K, Shimokawa M, et al. First-Line Osimertinib for Previously Untreated Patients With NSCLC and Uncommon EGFR Mutations: The UNICORN Phase 2 Nonrandomized Clinical Trial[J]. JAMA Oncol, 2024, 10(1): 43-51.


[56]Robichaux JP, Le X, Vijayan RSK, et al. Structure-based classification predicts drug response in EGFR-mutant NSCLC[J]. Nature, 2021, 597(7878): 732-737.


[57]Le, X.N. et al. FURTHER: A Global, Randomized Study of Firmonertinib at Two Dose Levels in TKI-Naive, Advanced NSCLC with EGFR PACC Mutations. WCLC 2024. Abstract PL04.07.[J].


[58]Zhou C, Ramalingam SS, Kim TM, et al. Treatment Outcomes and Safety of Mobocertinib in Platinum-Pretreated Patients With EGFR Exon 20 Insertion-Positive Metastatic Non-Small Cell Lung Cancer: A Phase 1/2 Open-label Nonrandomized Clinical Trial[J]. JAMA Oncol, 2021, 7(12): e214761.


[59]Janne PA, Wang BC, Cho BC, et al. First-Line Mobocertinib Versus Platinum-Based Chemotherapy in Patients With EGFR Exon 20 Insertion-Positive Metastatic Non-Small Cell Lung Cancer in the Phase III EXCLAIM-2 Trial[J]. J Clin Oncol, 2025: JCO2401269.


[60]Wang M, Fan Y, Sun M, et al. Sunvozertinib for patients in China with platinum-pretreated locally advanced or metastatic non-small-cell lung cancer and EGFR exon 20 insertion mutation (WU-KONG6): single-arm, open-label, multicentre, phase 2 trial[J]. Lancet Respir Med, 2024, 12(3): 217-224.


[61]Piotrowska Z, Tan DS, Smit EF, et al. Safety, Tolerability, and Antitumor Activity of Zipalertinib Among Patients With Non-Small-Cell Lung Cancer Harboring Epidermal Growth Factor Receptor Exon 20 Insertions[J]. J Clin Oncol, 2023: JCO2300152.


[62]Duan J, Wu L, Yang K, et al. Safety, Tolerability, Pharmacokinetics, and Preliminary Efficacy of YK-029A in Treatment-Naive Patients With Advanced NSCLC Harboring EGFR Exon 20 Insertion Mutations: A Phase 1 Trial[J]. J Thorac Oncol, 2024, 19(2): 314-324.


[63]Moores SL, Chiu ML, Bushey BS, et al. A Novel Bispecific Antibody Targeting EGFR and cMet Is Effective against EGFR Inhibitor-Resistant Lung Tumors[J]. Cancer Research, 2016, 76(13): 3942-3953.


[64]Zhou C, Tang KJ, Cho BC, et al. Amivantamab plus Chemotherapy in NSCLC with EGFR Exon 20 Insertions[J]. N Engl J Med, 2023.


[65]Zhao S, Zhuang W, Han B, et al. Phase 1b trial of anti-EGFR antibody JMT101 and Osimertinib in EGFR exon 20 insertion-positive non-small-cell lung cancer[J]. Nat Commun, 2023, 14(1): 3468.


[66]Cho BC, Lu S, Felip E, et al. Amivantamab plus Lazertinib in Previously Untreated EGFR-Mutated Advanced NSCLC[J]. N Engl J Med, 2024.


[67]Heinen CD. Genotype to phenotype: analyzing the effects of inherited mutations in colorectal cancer families[J]. Mutat Res, 2010, 693(1-2): 32-45.


[68]Giardiello FM, Krush AJ, Petersen GM, et al. Phenotypic variability of familial adenomatous polyposis in 11 unrelated families with identical APC gene mutation[J]. Gastroenterology, 1994, 106(6): 1542-1547.


[69]Kiran RP, Kochhar GS, Kariv R, et al. Management of pouch neoplasia: consensus guidelines from the International Ileal Pouch Consortium[J]. Lancet Gastroenterol Hepatol, 2022, 7(9): 871-893.


[70]Aelvoet AS, Struik D, Bastiaansen BAJ, et al. Colectomy and desmoid tumours in familial adenomatous polyposis: a systematic review and meta-analysis[J]. Fam Cancer, 2022, 21(4): 429-439.


[71]Ricciardiello L, Ahnen DJ, Lynch PM. Chemoprevention of hereditary colon cancers: time for new strategies[J]. Nat Rev Gastroenterol Hepatol, 2016, 13(6): 352-361.


[72]Giardiello FM, Hamilton SR, Krush AJ, et al. Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis[J]. N Engl J Med, 1993, 328(18): 1313-1316.


[73]Castellsague J, Riera-Guardia N, Calingaert B, et al. Individual NSAIDs and upper gastrointestinal complications: a systematic review and meta-analysis of observational studies (the SOS project)[J]. Drug Saf, 2012, 35(12): 1127-1146.


[74]Phillips RK, Wallace MH, Lynch PM, et al. A randomised, double blind, placebo controlled study of celecoxib, a selective cyclooxygenase 2 inhibitor, on duodenal polyposis in familial adenomatous polyposis[J]. Gut, 2002, 50(6): 857-860.


[75]Lynch PM, Ayers GD, Hawk E, et al. The safety and efficacy of celecoxib in children with familial adenomatous polyposis[J]. Am J Gastroenterol, 2010, 105(6): 1437-1443.


[76]Solomon SD, Pfeffer MA, McMurray JJ, et al. Effect of celecoxib on cardiovascular events and blood pressure in two trials for the prevention of colorectal adenomas[J]. Circulation, 2006, 114(10): 1028-1035.


[77]Burke CA, Dekker E, Lynch P, et al. Eflornithine plus Sulindac for Prevention of Progression in Familial Adenomatous Polyposis[J]. N Engl J Med, 2020, 383(11): 1028-1039.


[78]Zhou L, Zheng L, Xu B, et al. Clinical efficacy of metformin in familial adenomatous polyposis and the effect of intestinal flora[J]. Orphanet J Rare Dis, 2024, 19(1): 88.


[79]Park JJ, Kim BC, Hong SP, et al. The Effect of Metformin in Treatment of Adenomas in Patients with Familial Adenomatous Polyposis[J]. Cancer Prev Res (Phila), 2021, 14(5): 563-572.


[80]West NJ, Clark SK, Phillips RK, et al. Eicosapentaenoic acid reduces rectal polyp number and size in familial adenomatous polyposis[J]. Gut, 2010, 59(7): 918-925.


[81]Petrik MB, McEntee MF, Chiu CH, et al. Antagonism of arachidonic acid is linked to the antitumorigenic effect of dietary eicosapentaenoic acid in Apc(Min/+) mice[J]. J Nutr, 2000, 130(5): 1153-1158.


[82]Cruz-Correa M, Hylind LM, Marrero JH, et al. Efficacy and Safety of Curcumin in Treatment of Intestinal Adenomas in Patients With Familial Adenomatous Polyposis[J]. Gastroenterology, 2018, 155(3): 668-673.


[83]Zhang J, Cao H, Zhang B, et al. Berberine potently attenuates intestinal polyps growth in ApcMin mice and familial adenomatous polyposis patients through inhibition of Wnt signalling[J]. J Cell Mol Med, 2013, 17(11): 1484-1493.


[84]Roos VH, Meijer BJ, Kallenberg FGJ, et al. Sirolimus for the treatment of polyposis of the rectal remnant and ileal pouch in four patients with familial adenomatous polyposis: a pilot study[J]. BMJ Open Gastroenterol, 2020, 7(1): e000497.


[85]Samadder NJ, Foster N, McMurray RP, et al. Phase II trial of weekly erlotinib dosing to reduce duodenal polyp burden associated with familial adenomatous polyposis[J]. Gut, 2023, 72(2): 256-263.


[86]Rao S, Guren MG, Khan K, et al. Anal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up(☆)[J]. Ann Oncol, 2021, 32(9): 1087-1100.


[87]de Martel C, Plummer M, Vignat J, et al. Worldwide burden of cancer attributable to HPV by site, country and HPV type[J]. Int J Cancer, 2017, 141(4): 664-670.


[88]Lin C, Franceschi S, Clifford GM. Human papillomavirus types from infection to cancer in the anus, according to sex and HIV status: a systematic review and meta-analysis[J]. Lancet Infect Dis, 2018, 18(2): 198-206.


[89]Morton M, Melnitchouk N, Bleday R. Squamous cell carcinoma of the anal canal[J]. Curr Probl Cancer, 2018, 42(5): 486-492.


[90]Ko G, Sarkaria A, Merchant SJ, et al. A systematic review of outcomes after salvage abdominoperineal resection for persistent or recurrent anal squamous cell cancer[J]. Colorectal Dis, 2019, 21(6): 632-650.


[91]Schiller DE, Cummings BJ, Rai S, et al. Outcomes of salvage surgery for squamous cell carcinoma of the anal canal[J]. Ann Surg Oncol, 2007, 14(10): 2780-2789.


[92]Martini G, Arrichiello G, Borrelli C, et al. How I treat anal squamous cell carcinoma[J]. ESMO Open, 2020, 4(Suppl 2): e000711.


[93]Xu WD, Jiang HY, Gao JM, et al. Preliminary results on anal cancer by applying intensity modulated radiotherapy and synchronous capecitabine chemotherapy simultaneously[J]. Transl Cancer Res, 2020, 9(7): 4366-4372.


[94]Kachnic LA, Winter KA, Myerson RJ, et al. Long-Term Outcomes of NRG Oncology/RTOG 0529: A Phase 2 Evaluation of Dose-Painted Intensity Modulated Radiation Therapy in Combination With 5-Fluorouracil and Mitomycin-C for the Reduction of Acute Morbidity in Anal Canal Cancer[J]. Int J Radiat Oncol Biol Phys, 2022, 112(1): 146-157.


[95]Morris VK, Salem ME, Nimeiri H, et al. Nivolumab for previously treated unresectable metastatic anal cancer (NCI9673): a multicentre, single-arm, phase 2 study[J]. Lancet Oncol, 2017, 18(4): 446-453.


[96]Marabelle A, Cassier PA, Fakih M, et al. Pembrolizumab for previously treated advanced anal squamous cell carcinoma: results from the non-randomised, multicohort, multicentre, phase 2 KEYNOTE-158 study[J]. Lancet Gastroenterol Hepatol, 2022, 7(5): 446-454.


[97]中国抗癌协会腹膜肿瘤专业委员会, 中国抗癌协会肿瘤热疗专业委员会, 北京癌症防治学会肿瘤热疗专业委员会. 弥漫性恶性腹膜间皮瘤诊治中国专家共识[J]. 中华医学杂志, 2021, 101(36): 2839-2849.


[98]Nagata Y, Sawada R, Takashima A, et al. Efficacy and safety of pemetrexed plus cisplatin as first-line chemotherapy in advanced malignant peritoneal mesothelioma[J]. Jpn J Clin Oncol, 2019, 49(11): 1004-1008.


[99]Marmarelis ME, Wang X, Roshkovan L, et al. Clinical Outcomes Associated With Pembrolizumab Monotherapy Among Adults With Diffuse Malignant Peritoneal Mesothelioma[J]. JAMA Netw Open, 2023, 6(3): e232526.


[100]Fennell DA, Ewings S, Ottensmeier C, et al. Nivolumab versus placebo in patients with relapsed malignant mesothelioma (CONFIRM): a multicentre, double-blind, randomised, phase 3 trial[J]. Lancet Oncol, 2021, 22(11): 1530-1540.


[101]Alley EW, Lopez J, Santoro A, et al. Clinical safety and activity of pembrolizumab in patients with malignant pleural mesothelioma (KEYNOTE-028): preliminary results from a non-randomised, open-label, phase 1b trial[J]. Lancet Oncol, 2017, 18(5): 623-630.


[102]Baas P, Scherpereel A, Nowak AK, et al. First-line nivolumab plus ipilimumab in unresectable malignant pleural mesothelioma (CheckMate 743): a multicentre, randomised, open-label, phase 3 trial[J]. Lancet, 2021, 397(10272): 375-386.


[103]Raghav K, Liu S, Overman M, et al. Clinical Efficacy of Immune Checkpoint Inhibitors in Patients With Advanced Malignant Peritoneal Mesothelioma[J]. JAMA Netw Open, 2021, 4(8): e2119934.


[104]Raghav K, Liu S, Overman MJ, et al. Efficacy, Safety, and Biomarker Analysis of Combined PD-L1 (Atezolizumab) and VEGF (Bevacizumab) Blockade in Advanced Malignant Peritoneal Mesothelioma[J]. Cancer Discov, 2021, 11(11): 2738-2747.


[105]Zalcman G, Mazieres J, Margery J, et al. Bevacizumab for newly diagnosed pleural mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): a randomised, controlled, open-label, phase 3 trial[J]. Lancet, 2016, 387(10026): 1405-1414.


[106]Adusumilli PS, Zauderer MG, Rivière I, et al. A Phase I Trial of Regional Mesothelin-Targeted CAR T-cell Therapy in Patients with Malignant Pleural Disease, in Combination with the Anti-PD-1 Agent Pembrolizumab[J]. Cancer Discov, 2021, 11(11): 2748-2763.


[107]He GQ, Li Q, Jing XY, et al. Persistent response to combination therapy of pemigatinib and chemotherapy in a child of combined hepatocellular-cholangiocarcinoma with FGFR2 fusion[J]. Mol Cancer, 2024, 23(1): 269.


[108]Vogel A, Sahai V, Hollebecque A, et al. An open-label study of pemigatinib in cholangiocarcinoma: final results from FIGHT-202[J]. ESMO Open, 2024, 9(6): 103488.


[109]Saleh M, Barve M, Subbiah V, et al. Open-label, dose-escalation FIGHT-101 study of pemigatinib combined with targeted therapy, chemotherapy, or immunotherapy in patients with advanced malignancies[J]. ESMO Open, 2024, 9(7): 103625.


[110]Rodón J, Damian S, Furqan M, et al. Pemigatinib in previously treated solid tumors with activating FGFR1-FGFR3 alterations: phase 2 FIGHT-207 basket trial[J]. Nat Med, 2024, 30(6): 1645-1654.


[111]Kang YK, Qin S, Lee KW, et al. Bemarituzumab plus mFOLFOX6 as first-line treatment in East Asian patients with FGFR2b-overexpressing locally advanced or metastatic gastric/gastroesophageal junction cancer: subgroup of FIGHT final analysis[J]. Gastric Cancer, 2024, 27(5): 1046-1057.


[112]Subbiah V, Sahai V, Maglic D, et al. RLY-4008, the First Highly Selective FGFR2 Inhibitor with Activity across FGFR2 Alterations and Resistance Mutations[J]. Cancer Discov, 2023, 13(9): 2012-2031.


[113]Wang-Gillam A, Lim KH, McWilliams R, et al. Correction: Defactinib, Pembrolizumab, and Gemcitabine in Patients with Advanced Treatment Refractory Pancreatic Cancer: a Phase I Dose Escalation and Expansion Study[J]. Clin Cancer Res, 2023, 29(22): 4698.


[114]Romero D. Zenocutuzumab shows efficacy in NRG1 fusion-positive solid tumours[J]. Nat Rev Clin Oncol, 2025.


[115]Schram AM, Goto K, Kim DW, et al. Efficacy of Zenocutuzumab in NRG1 Fusion-Positive Cancer[J]. N Engl J Med, 2025, 392(6): 566-576.


[116]Mühlenberg T, Falkenhorst J, Schulz T, et al. KIT ATP-Binding Pocket/Activation Loop Mutations in GI Stromal Tumor: Emerging Mechanisms of Kinase Inhibitor Escape[J]. J Clin Oncol, 2024, 42(12): 1439-1449.


[117]Jabbour E, Oehler VG, Koller PB, et al. Olverembatinib After Failure of Tyrosine Kinase Inhibitors, Including Ponatinib or Asciminib: A Phase 1b Randomized Clinical Trial[J]. JAMA Oncol, 2025, 11(1): 28-35.


[118]Zhang S, Deng S, Liu J, et al. Targeting MXD1 sensitises pancreatic cancer to trametinib[J]. Gut, 2025.


[119]George S, Blay JY, Chi P, et al. The INSIGHT study: a randomized, Phase III study of ripretinib versus sunitinib for advanced gastrointestinal stromal tumor with KIT exon 11 + 17/18 mutations[J]. Future Oncol, 2024, 20(27): 1973-1982.


[120]Cuvelier C, Brahmi M, Sobhani I, et al. Clinical description and development of a prognostic score for neurofibromatosis type 1 (NF1)-associated GISTs: a retrospective study from the NETSARC[J]. ESMO Open, 2025, 10(3): 104477


[121]Tracy L Rose, William Y Kim.Renal Cell Carcinoma: A Review.JAMA. 2024 Sep 24;332(12):1001-1010.doi: 10.1001/jama.2024.12848.


[122]Matthew Young, Francesca Jackson-Spence.Renal cell carcinoma.Lancet. 2024 Aug 3;404(10451):476-491.doi: 10.1016/S0140-6736(24)00917-6. Epub 2024 Jul 18.


[123]David A Braun,Kelly Street,Kelly P Burke.Progressive immune dysfunction with advancing disease stage in renal cell carcinoma.Cancer Cell. 2021 May 10;39(5):632-648.e8.doi: 10.1016/j.ccell.2021.02.013. Epub 2021 Mar 11.


[124]Yize Li,Tung-Shing M Lih,Saravana M Dhanasekaran.Histopathologic and proteogenomic heterogeneity reveals features of clear cell renal cell carcinoma aggressiveness.Cancer Cell. 2023 Jan 9;41(1):139-163.e17.doi: 10.1016/j.ccell.2022.12.001. Epub 2022 Dec 22.


[125]Junyi Hu , Shao-Gang Wang , Yaxin Hou .Multi-omic profiling of clear cell renal cell carcinoma identifies metabolic reprogramming associated with disease progression.Nat Genet. 2024 Mar;56(3):442-457. doi: 10.1038/s41588-024-01662-5. Epub 2024 Feb 15.


[126]Thi Oanh Bui, Van Tu Dao, Van Tai Nguyen,et al.Genomics of Clear-cell Renal Cell Carcinoma: A Systematic Review and Meta-analysis.Eur Urol. 2022 Apr;81(4):349-361.doi: 10.1016/j.eururo.2021.12.010. Epub 2022 Jan 3.


[127]Jonasch E, Bauer TM, Papadopoulos KP, et al. Phase I LITESPARK- 001 study of belzutifan for advanced solid tumors: Extended 41-month follow-up in the clear cell renal cell carcinoma cohort. Eur J Cancer 2023;196:113434.


[128]Albiges L, Rini B, Peltola K, et al. LBA88 Belzutifan versus


everolimus in participants (pts) with previously treated advanced clear cell renal cell carcinoma (ccRCC): Randomized open-label phase III LITESPARK-005 study. Ann Oncol 2023;34:S1329-S1330.


[129]Sumanta K Pal,Ben Tran,John B A G Haanen,et al.CD70-Targeted Allogeneic CAR T-Cell Therapy for Advanced Clear Cell Renal Cell Carcinoma.Cancer Discov. 2024 Jul 1;14(7):1176-1189.doi: 10.1158/2159-8290.CD-24-0102.


[130]Wenjia Zhu,Xiaoyuan Li,Guoyang Zheng,et al.Preclinical and pilot clinical evaluation of a small-molecule carbonic anhydrase IX targeting PET tracer in clear cell renal cell carcinoma.Eur J Nucl Med Mol Imaging. 2023 Aug;50(10):3116-3125.  doi: 10.1007/s00259-023-06248-7. Epub 2023 May 29.


[131]David A Braun,Ziad Bakouny,Laure Hirsch,et al  .Beyond conventional immune-checkpoint inhibition - novel immunotherapies for renal cell carcinoma.Nat Rev Clin Oncol. 2021Apr;18(4):199-214.doi:10.1038/s41571-020-00455-z. Epub 2021 Jan 12.


[132]Wang Z, Liu C, Zheng S, et al. Molecular subtypes of neuroendocrine carcinomas: A cross-tissue classification framework based on five transcriptional regulators[J]. Cancer Cell, 2024, 42(6): 1106-1125.e1108.


[133]Xu J, Lou X, Wang F, et al. MEN1 Deficiency-Driven Activation of the β-Catenin-MGMT Axis Promotes Pancreatic Neuroendocrine Tumor Growth and Confers Temozolomide Resistance[J]. Adv Sci (Weinh), 2024, 11(35): e2308417.


[134]Zheng K, Duan J, Wang R, et al. Deep learning model with pathological knowledge for detection of colorectal neuroendocrine tumor[J]. Cell Rep Med, 2024, 5(10): 101785.


[135]Liu M, Ren C, Zhang H, et al. Evaluation of the safety, biodistribution, dosimetry of [(18)F]AlF-NOTA-LM3 and head-to-head comparison with [(68)Ga]Ga-DOTATATE in patients with well-differentiated neuroendocrine tumors: an interim analysis of a prospective trial[J]. Eur J Nucl Med Mol Imaging, 2024, 51(12): 3719-3730.


[136]Lu M, Zhang P, Luo S, et al. A novel and uniquely designed bispecific antibody (LBL-024) against PD-L1 and 4-1BB in patients with advanced malignant tumors and neuroendocrine carcinoma: A report of safety and robust efficacy of LBL-024 monotherapy in phase I/II, first-in-human, open-label, multicenter, dose escalation/expansion study[J]. 2024, 42(16_suppl): 4010-4010.


[137]Yen CJ, Chen MH, Chen YY, et al. 1145MO CVM-005: Phase IIa study of CVM-1118, a novel oral anti-vasculogenic mimicry (VM) agent, in advanced neuroendocrine tumors (NET) after progression on prior therapy[J]. Annals of Oncology, 2024, 35: S751.


[138]中国抗癌协会神经内分泌肿瘤专业委员会, 陈洁, 聂勇战, et al. 中国抗癌协会神经内分泌肿瘤诊治指南(2025年版) [J]. 中国癌症杂志, 2025, 35(1): 85-142.


[139]Xie F, Luo S, Liu D, et al. Genomic and transcriptomic landscape of human gastrointestinal stromal tumors[J]. Nat Commun, 2024, 15(1): 9495.


[140]Qiu H, Zhou Z-w, Zhou Y, et al. Updated efficacy results of olverembatinib (HQP1351) in patients with tyrosine kinase inhibitor (TKI)-resistant succinate dehydrogenase (SDH)-deficient gastrointestinal stromal tumors (GIST) and paraganglioma[J]. 2024, 42(16_suppl): 11502-11502.


[141]Qiu H, Yang C, Zhou Z, et al. 1722MO Updated efficacy results of olverembatinib (HQP1351) in patients with succinate dehydrogenase (SDH)-deficient gastrointestinal stromal tumors (GIST) and potential mechanisms of action (MOA)[J]. Annals of Oncology, 2024, 35: S1032.


[142]Liu X, Yu J, Li Y, et al. Deciphering the tumor immune microenvironment of imatinib-resistance in advanced gastrointestinal stromal tumors at single-cell resolution[J]. Cell Death Dis, 2024, 15(3): 190.


[143]Tao P, Wang Z, Wang J, et al. 241P Single-cell RNA analysis uncovers tumor microenvironment heterogeneity and underlying mechanisms for imatinib resistance in gastrointestinal stromal tumor[J]. Annals of Oncology, 2024, 35: S103.


[144]Wu X, Iwatsuki M, Takaki M, et al. FBXW7 regulates the sensitivity of imatinib in gastrointestinal stromal tumors by targeting MCL1[J]. Gastric Cancer, 2024, 27(2): 235-247.


[145]Wu X, Yamashita K, Matsumoto C, et al. YAP acts as an independent prognostic marker and regulates growth and metastasis of gastrointestinal stromal tumors via FBXW7-YAP pathway[J]. Journal of Gastroenterology, 2025, 60(3): 275-284.


[146]Cui Z, Sun H, Gao Z, et al. TRIM21/USP15 balances ACSL4 stability and the imatinib resistance of gastrointestinal stromal tumors[J]. Br J Cancer, 2024, 130(4): 526-541.


[147]Li Y, Zhang R, Fu C, et al. Intratumoral microbiome promotes liver metastasis and dampens adjuvant imatinib treatment in gastrointestinal stromal tumor[J]. Cancer Lett, 2024, 601: 217149.


[148]Yong WP, Naito Y, Hirano H, et al. 267TiP CHAPTER-GIST-101: A phase I study of pimitespib combined with imatinib in patients with imatinib-refractory gastrointestinal stromal tumor[J]. Annals of Oncology, 2024, 35: S1504.


[149]Han L, Dai Q, He C, et al. A tetrahedral DNA nanoplatform with ultrasound-triggered biomimetic nanocarriers for targeted siMCM2 delivery and reversal of imatinib resistance in gastrointestinal stromal tumors[J]. Chemical Engineering Journal, 2025, 504: 158843.


[150]Sun X, Lin X, Zhang Q, et al. Safety, effectiveness and the optimal duration of preoperative imatinib in locally advanced gastric gastrointestinal stromal tumors: A retrospective cohort study[J]. 2024, 13(18): e70237.


[151]Wen H, Huang Y, Huang S, et al. The long-term efficacy of imatinib with hepatic resection or other local treatment for gastrointestinal stromal tumours liver metastases: a retrospective cohort study[J]. Int J Surg, 2024, 110(4): 2151-2161.


[152]Yang L, Lin T, Gao X, et al. 116P Ripretinib used for preoperative treatment of metastatic gastrointestinal stromal tumor after failure of imatinib therapy[J]. Annals of Oncology, 2024, 35: S1446.


[153]Sun H, Cui Z, Li C, et al. USP5 Promotes Ripretinib Resistance in Gastrointestinal Stromal Tumors by MDH2 Deubiquition[J]. 2024, 11(34): 2401171.


[154]Heinrich MC, Zhang X, Jones RL, et al. Clinical Benefit of Avapritinib in KIT-Mutant Gastrointestinal Stromal Tumors: A Post Hoc Analysis of the Phase I NAVIGATOR and Phase I/II CS3007-001 Studies[J]. Clin Cancer Res, 2024, 30(4): 719-728.


[155]Dong Z, Zhao X, Zheng H, et al. Efficacy of real-time artificial intelligence-aid endoscopic ultrasonography diagnostic system in discriminating gastrointestinal stromal tumors and leiomyomas: a multicenter diagnostic study[J]. EClinicalMedicine, 2024, 73: 102656.


[156]Bertsimas D, Margonis GA, Sujichantararat S, et al. Interpretable artificial intelligence to optimise use of imatinib after resection in patients with localised gastrointestinal stromal tumours: an observational cohort study[J]. Lancet Oncol, 2024, 25(8): 1025-1037.


[157]Wang R, Kang W, Liu Z, et al. Head-to-Head Comparison of [(68)Ga]Ga-NOTA-RM26 and [(18)F]FDG PET/CT in Patients with Gastrointestinal Stromal Tumors: A Prospective Study[J]. J Nucl Med, 2025, 66(2): 201-206.


[158]Wu C, Wen F, Lin F, et al. Predictive performance of [18F]F-fibroblast activation protein inhibitor (FAPI)-42 positron emission tomography/computed tomography (PET/CT) in evaluating response of recurrent or metastatic gastrointestinal stromal tumors: complementary or alternative to [18F]fluorodeoxyglucose (FDG) PET/CT?[J]. 2024, 2024, 14(8): 5333-5345.


[159].Lenders JW, Duh QY, Eisenhofer G, et al. Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. J Clin.Endocrinol Metab 2014;99:1915-1942


[160].Chen H, Sippel RS, O'Dorisio MS, et al. The North American Neuroendocrine Tumor Society consensus guideline for the diagnosis and management of neuroendocrine tumors: pheochromocytoma,paraganglioma, and medullary thyroid cancer. Pancreas 2010;39:775-783.


[161]Lenders JWM, Eisenhofer G. Update on modern management of pheochromocytoma and paraganglioma. Endocrinol Metab (Seoul) 2017;32:152-161.


[162]Turkova H, Prodanov T, Maly M, et al. Characteristics and outcomes of metastatic Sdhb and sporadic pheochromocytoma/paraganglioma: An National Institutes of Health study. Endocr Pract 2016;22:302-314.


[163]King KS, Prodanov T, Kantorovich V, et al. Metastatic pheochromocytoma/paraganglioma related to primary tumor development in childhood or adolescence: significant link to SDHB mutations. J Clin Oncol 2011;29:4137-4142.


[164]Fishbein L, Merrill S, Fraker DL, et al. Inherited mutations in pheochromocytoma and paraganglioma: why all patients should be offered genetic testing. Ann Surg Oncol 2013;20:1444-1450.


[165]Pacak K, Jochmanova I, Prodanov T, et al. New syndrome of paraganglioma and somatostatinoma associated with polycythemia. J Clin Oncol 2013;31:1690-1698.


[166]David Taïeb , George B Wanna , Maleeha Ahmad ,et al.(2023).  Clinical consensus guideline on the management of phaeochromocytoma and paraganglioma in patients harbouring germline SDHD pathogenic variants.Lancet Diabetes Endocrinol . 2023 May;11(5):345-361. doi: 10.1016/S2213-8587(23)00038-4. Epub 2023 Mar 31.


[167]Pryma DA, Chin BB, Noto RB, et al. Efficacy and safety of highspecific-activity (131)I-MIBG therapy in patients with advanced pheochromocytoma or paraganglioma. J Nucl Med 2019;60:623-630.


[168]Kong G, Grozinsky-Glasberg S, Hofman MS, et al. Efficacy of peptide receptor radionuclide therapy for functional metastatic paraganglioma and pheochromocytoma. J Clin Endocrinol Metab 2017;102:3278-3287.


[169]Satapathy S, Mittal BR, Bhansali A. 'Peptide receptor radionuclide therapy in the management of advanced pheochromocytoma and paraganglioma: A systematic review and meta-analysis'. Clin Endocrinol (Oxf) 2019;91:718-727.


[170]Tanabe A, Naruse M, Nomura K, et al. Combination chemotherapy with cyclophosphamide, vincristine, and dacarbazine in patients with malignant pheochromocytoma and paraganglioma. Horm Cancer 2013;4:103-110.


[171]Ayala-Ramirez M, Feng L, Habra MA, et al. Clinical benefits of systemic chemotherapy for patients with metastatic pheochromocytomas or sympathetic extra-adrenal paragangliomas: insights from the largest single-institutional experience. Cancer 2012;118:2804-2812.


[172]Camilo Jimenez , Mouhammed Amir Habra , Matthew T Campbell. Cabozantinib in patients with unresectable and progressive metastatic phaeochromocytoma or paraganglioma (the Natalie Trial): a single-arm, phase 2 trial.Lancet Oncol. 2024 May;25(5):658-667.doi: 10.1016/S1470-2045(24)00133-5.Epub 2024 Apr 9.


[173]Eric Baudin , Bernard Goichot , Alfredo Berruti.Sunitinib for metastatic progressive phaeochromocytomas and paragangliomas: results from FIRSTMAPPP, an academic, multicentre, international, randomised, placebo-controlled, double-blind, phase 2 trial.Lancet.2024Mar16;403(10431):1061-1070. doi:10.1016/S0140-6736(23)02554-0.Epub 2024 Feb 22.


[174]Eric Jonasch , Ian E McCutcheon , Dan S Gombos ,et al.(2018).Pazopanib in patients with von Hippel-Lindau disease: a single-arm, single-centre, phase 2 trial.Lancet Oncol . 2018 Oct ; 19(10):1351-1359. doi: 10.1016/S1470-2045(18)30487-X. Epub 2018 Sep 17.


[175]Aurélie Morin , Judith Goncalves,Sophie Moog ,etal.(2020).TET-Mediated Hypermethylation Primes SDH-Deficient Cells for HIF2α-Driven Mesenchymal Transition.Cell Rep . 2020 Mar 31;30(13):4551-4566.e7.doi: 10.1016/j.celrep.2020.03.022.


[176]Timothy J Walker , Eduardo Reyes-Alvarez , Brandy D Hyndman ,et al.(2024)Loss of tumor suppressor TMEM127 drives RET-mediated transformation through disrupted membrane dynamics.Elife . 2024 Apr 30:12:RP89100. doi: 10.7554/eLife.89100.


[177]Qianjin Guo, Zi-Ming Cheng, Hector Gonzalez-Cantú ,et al.TMEM127 suppresses tumor development by promoting RET ubiquitination, positioning, and degradation.Cell Rep.2023 Sep 26;42(9):113070.doi: 10.1016/j.celrep.2023.113070. Epub 2023 Sep 1.


[178]Priyanka Gupta , Keehn Strange , Rahul Telange ,et al.(2022). Genetic impairment of succinate metabolism disrupts bioenergetic sensing in adrenal neuroendocrine cancer.Cell Rep . 2022 Aug 16;40(7):111218 . doi: 10.1016/j.celrep.2022.111218.


[179]Farooq U, El Alayli A, Duvvuri A, et al. Nonsteroidal Anti-inflammatory Drugs for Chemoprevention in Patients With Familial Adenomatous Polyposis: A Systematic Review and Meta-Analysis[J]. Gastro Hep Adv, 2023, 2(7): 1005-1013.


[180]Tazzari M, Brich S, Tuccitto A, et al. Complex Immune Contextures Characterise Malignant Peritoneal Mesothelioma: Loss of Adaptive Immunological Signature in the More Aggressive Histological Types[J]. J Immunol Res, 2018, 2018: 5804230.


[181]Shrestha R, Nabavi N, Lin YY, et al. BAP1 haploinsufficiency predicts a distinct immunogenic class of malignant peritoneal mesothelioma[J]. Genome Med, 2019, 11(1): 8.


[182]Braun DA, Bakouny Z, Hirsch L, et al. Beyond conventional immune-checkpoint inhibition - novel immunotherapies for renal cell carcinoma[J]. Nat Rev Clin Oncol, 2021, 18(4): 199-214.


[183]Heinrich MC, Jones RL, George S, et al. Ripretinib versus sunitinib in gastrointestinal stromal tumor: ctDNA biomarker analysis of the phase 3 INTRIGUE trial[J]. Nat Med, 2024, 30(2): 498-506.