《中国恶性肿瘤学科发展报告(2023)》——神经肿瘤未来展望篇


本学科发展趋势与对策

01
未来5年发展的战略需求
       胶质瘤:建立国家级脑胶质瘤专病队列,开展前瞻性高质量临床试验,降低脑胶质瘤患者分子病理检测成本,丰富脑胶质瘤术后辅助治疗手段。
       脊髓肿瘤:(1)对于可手术切除的肿瘤,提高手术效率和安全性:进一步深化现有成像技术(CT/MRI)多模态结合,加强影像学数据与真实人体的联系,精确定位;探索更新的成像技术(如显微荧光技术、光CT技术)在术中呈现更加精细的脊髓—肿瘤结构关系,增加手术切除的目的性与可操作性,尽可能在“肿瘤全切”和“功能保全”之间寻找到合适的边界。同时,探索新技术、整合成熟技术,加强对于脊髓及周围组织保护,尤其是髓周、髓内血管保护,减少手术后非预期的脊髓损伤造成不必要的神经功能障碍和脊髓周围器官组织损伤。(2)对于不宜手术切除的肿瘤,加强多学科协作,共同“改善生存质量、延长生存期”:临床诊疗方面,针对“全切”、“近全切”有困难的肿瘤,需要涉及如肿瘤科、放疗科、疼痛科、神经内科等科室在非手术治疗、症状控制方面综合评估,“精准化”制定方案;内科(如心内科、消化内科等)针对脊髓功能障碍相关并发症规律评估治疗方案;康复科、心理医学科(必要时安宁医疗科)协助患者心理及生理“舒缓与复健”,帮助患者面对疾病的预后。(3)抗肿瘤新药的研发与给药途径的探索:脊髓恶性肿瘤如胶质母细胞瘤目前可使用的药物肿瘤不多,如替莫唑胺(temozolomide)、埃克替尼(erlotinib)、贝伐珠单抗(bevacizumab)等展现出部分效果,但整体效果仍需进一步提高。同时也需要更多机制的药物如免疫疗法进入脊髓肿瘤领域。给药途径的突破也是中枢神经系统肿瘤治疗亟需的改变,打破血脑屏障、提高局部抗肿瘤药物浓度、减缓药物代谢、载药运载体也是提高药物治疗效果可探索的领域。(4)肿瘤治疗后恢复社会功能:无论良恶性,脊髓肿瘤治疗后均可残存躯体感觉、运动障碍,甚至协调功能、精细运动功能障碍(后索损伤),极大影响社会功能、社会活动。恢复肢体运动功能,提高个体适应能力是极其迫切的。除传统的康复训练外,利用新兴技术融合促进脊髓功能康复值得深入探索,如脑—脊髓—机接口、脊髓电刺激、躯体外骨骼等,尤其是OpenAI出现后,人机交互效率可能得到极大提高;促进脊髓自主修复的脊髓再生材料研究、脊髓重塑诱导调控也是近年研究热点和可能的突破点。
       PCNSL:(1)多学科合作:加强神经外科、肿瘤内科、放疗科、病理科、影像诊断科等相关学科之间的合作,形成多学科综合诊疗模式,提高治疗效果。(2)数据共享与挖掘:建立完善的数据管理系统,促进各医疗机构之间的数据共享与挖掘,提高研究的可靠性和科学性。(3)人才培养:加强对PCNSL学科专业人才的培养,培养具备临床能力和研究素养的专业人员。
       脑转移瘤:(1)多学科合作:加强神经外科、肿瘤内科、放疗科、病理科、影像诊断科等相关学科之间的合作,形成多学科综合诊疗模式,提高治疗效果。(2)数据共享与挖掘:建立完善的数据管理系统,促进各医疗机构之间的数据共享与挖掘,提高研究的可靠性和科学性。(3)人才培养:加强对脑转移瘤学科专业人才的培养,培养具备临床能力和研究素养的专业人员。
02
未来5年重点发展方向
       胶质瘤:脑胶质瘤标准化诊疗的推广普及,脑胶质瘤创新诊疗手段研发。垂体神经内分泌肿瘤领域,PitNETs的未来研究方向主要集中在遗传学,分子病理学,影像组学以及微环境学等领域。在多学科联合的诊疗模式的基础上,通过融合功能成像、分子成像以及影像组学大数据的人工智能辅助诊断算法的应用,建立PitNETs影像诊断的多组学方法,对术前分子基因型进行预测,将成为诊疗领域新的发展趋势。PitNETs患者目前还没有正式的WHO分级或AJCC TNM分级系统应用于PitNETs,随着对疾病更深层次的认识和多学科的协作,未来有必要对实现肿瘤分级及肿瘤行为的预测模型提供病理学数据。PitNETs未来研究的目标包括确定判断疾病预后的早期生物标志物,预测治疗反应的标志物,制定最佳治疗时间、顺序和组合。通过对肿瘤的遗传机制、表观遗传学和微环境如何相互作用的研究,寻找新的治疗靶点,为免疫治疗和靶向治疗开展奠定基础,最终实现精准诊断、个体化治疗和规范化管理,改善患者远期预后将成为本领域的研究方向。
       脊髓肿瘤:(1)肿瘤的精准手术治疗:随着影像医学以及计算机技术的发展,对于可手术切除的脊髓肿瘤,未来将更偏重于肿瘤的精准切除治疗方式。利用现有的CT/OCT/MRI/超声等影像学技术,可在术前进行三维重建,力争真实还原肿瘤与毗邻神经组织的结构关系,指导手术方案的精准设计;同时结合神经导航、术中O臂定位、术中神经电生理监测等技术手段,实现最大程度保障神经功能下的肿瘤切除,避免不必要的神经功能损伤,最大程度保证患者术后的神经功能恢复。(2)肿瘤的个体化治疗:随着基因组学、代谢组学、蛋白质组学、表观遗传学等技术的发展,未来脊髓肿瘤的治疗将更趋向于个体化治疗。对患者的肿瘤组织进行分子病理学分析,可以更加准确的了解患者病情,指导手术外的综合治疗方案。例如,目前脑胶质瘤的诊疗已全面进入分子病理时代,而对于脊髓胶质瘤的分子病理特点仍亟待更深入的探索。未来随着脊髓肿瘤分子病理学的进展,有望对标脑胶质瘤的个性化综合治疗方案,如化疗、放疗、靶向药物治疗、电场治疗、免疫治疗等,更好的改善患者预后。(3)肿瘤的智能化治疗:随着人工智能和机器学习等先进技术的发展,肿瘤的智能化治疗将成为未来的重点发展方向之一。对于一些脊髓肿瘤,在患者就诊之初可能会被误诊为脊髓炎症等疾病,而这往往会贻误患者的最佳手术时机。通过人工智能和机器学习等技术,可以利用AI对海量的患者影像和病历数据进行分析处理,可以帮助临床医生更加准确、快速地对脊髓肿瘤进行诊疗,提升诊疗的准确率、安全性,缩短患者在住院前的等待时间,提升患者满意度和预后。(4)肿瘤的多学科治疗:随着医疗体系的不断完善以及人们对疾病认识的不断深入,现代医学更认为肿瘤是一种“全身性”疾病,而不仅仅是单纯的局部病灶治疗。未来脊髓肿瘤的诊疗发展方向将更加注重多学科综合治疗,例如术前评估(尤其是病情复杂的患者)需要麻醉科、内科等多个学科共同完成,肿瘤的化疗、放疗、靶向药物治疗、电场治疗、免疫治疗也需要其他学科的共同协作。对于脊髓肿瘤术后神经功能受损的患者,需要康复科的长期康复训练支持。随着工科的不断发展,“医工交叉”的脑—脊髓—机接口、脊髓电刺激、躯体外骨骼等技术也可以帮助术后患者恢复肢体运动功能,成为未来最具前景的发展方向之一。
       PCNSL:(1)基于分子标志物等进行个体化医疗,结合患者的基因型和表型特征进行治疗方案的定制化,提高治疗效果和生存率;(2)化疗、靶向治疗、免疫治疗等联合应用,进一步提高PCNSL的疗效,加强对肿瘤免疫治疗的研究,开发更有效的免疫治疗手段,提高患者的免疫应答和治疗效果。
       脑转移瘤:(1)基于分子标志物等进行个体化医疗,结合患者的基因型和表型特征进行治疗方案的定制化,提高治疗效果和生存率;(2)免疫治疗与放疗等联合应用,进一步提高脑转移瘤的疗效,并优化放疗剂量与范围,减轻治疗毒性。加强对肿瘤免疫治疗的研究,开发更有效的免疫治疗手段,提高患者的免疫应答和治疗效果。(3)术前SRT:结合目前已发表的回顾及小样本前瞻性临床研究结果,开展多中心前瞻性III期研究,对比术前与术后SRT的优劣,并探索术前SRT的剂量、范围等。(4)AI辅助治疗脑转移瘤,从辅助诊断、鉴别诊断到辅助靶区勾画、计划设计、优化在线治疗流程、建立疗效与毒性预测模型等方面均可进行相关研究,潜力无限。(5)小细胞肺癌SRT适应征扩大,探索适合初始SRT治疗的小细胞肺癌脑转移个数、体积等的患者群体类型,在保证疗效的基础上尽可能保护患者神经认知功能.
03
未来5年发展对策
       胶质瘤:坚持以临床需要为目标、临床问题为导向,鼓励医企联合,共同研发脑胶质瘤创新诊疗手段。
       脊髓肿瘤:脊髓恶性肿瘤是一种罕见但具有严重生命威胁的疾病,对患者的生存和生活质量造成了极大影响。在未来5年,针对脊髓恶性肿瘤的治疗和管理需要采取一系列综合对策,以提升治疗效果、延长患者生存期并改善生存质量。(1)通过高科技技术多模态融合,提高手术效率和安全性:将现有新型技术的优势进行多模态融合,在手术切除肿瘤的全过程中融入新技术,提高手术效率及安全性。如发展虚拟现实技术与术中实时影像融合技术,除了在术前对肿瘤精准定位外,还可在肿瘤切除过程中增加手术切除的目的性和可操作性;同时术中DCI-OCT等新兴技术的拓展应用可以提供超高速的术中病理结果,近乎实时的术中病理结果提供可以大大提高恶性肿瘤切缘阴性率同时极大程度减少对周围正常组织损伤;此外在医务人员手术操作技术提高的同时,还需要加强其对临床新技术应用的接受度及应用熟练度,以更好的服务临床工作。(2)加强多学科协作,改善生存质量和延长生存期:针对不宜手术切除的肿瘤,应加强多学科协作,通过MDT讨论后,制定精准化的治疗方案,在进行全身药物治疗同时研发并拓展微创肿瘤治疗技术,通过结合虚拟现实技术的精准肿瘤定位及通道选择,局部注射抗肿瘤药物等方法,不断加强科研与临床以及不同临床学科之间的衔接,促进科研成果与临床实践的无缝衔接,推动临床转化以及个性化医疗的发展,共同致力于改善患者的生存质量和延长生存期。(3)研发抗肿瘤新药和探索给药途径:针对脊髓恶性肿瘤的疗效问题,除了进一步加大新药研发力度,探索肿瘤发展机制和药效药理作用,研制新型药品或拓展已有抗肿瘤药物在脊髓恶性肿瘤的应用外,还应突破现有给药途径的局限,通过发展纳米颗粒载药、生物膜包裹、电磁引导等各种途径增加药物的靶向能力,提高抗肿瘤药物在局部的浓度,减缓药物代谢,最大程度发挥肿瘤杀伤效应,减少全身副作用。(4)恢复社会功能,促进康复和自主生活:脊髓恶性肿瘤治疗后,患者往往面临各种社会功能障碍,对患者及家人造成了极大的负担。传统的康复训练有助于患者术后功能恢复,但是周期长、效果差的缺点使患者恢复受限。充分将新兴技术如术中脊髓再生材料植入、脑-脊髓-机接口、脊髓电刺激、躯体外骨骼等与术后康复训练相结合,会为瘫痪患者提供新的治疗方法,有助于脊髓的修复和再生,促进脊髓功能的康复和自主修复,延缓脊髓神经的萎缩、缓解和控制脊髓损伤导致的并发症。
       总而言之,未来5年对恶性肿瘤的治疗需求是多层次的、多角度的,需要全面提升医疗服务水平,加强多学科协作,促进新药研发和给药途径的探索,并以康复和自主生活为目标,持续改善患者的生存质量和延长生存期。以临床问题为导向,多模态融合新兴技术,提高临床医生对新兴技术的研发及培训意识,推动临床实践与技术创新的融合,促进临床医生与技术人员的密切合作,将新技术快速应用于临床实践,并进行长期追踪和评估,为脊髓恶性肿瘤患者带来更好的治疗方案和更乐观的未来。
       PCNSL与脑转移瘤:(1)加强科研力量:增加科研投入,支持相关研究机构和团队的科研项目,鼓励创新和突破。(2)优化医疗资源配置:加大基层医院治疗设备和药物的采购力度,提高医疗资源的利用效率。(3)加强数据共享与国际交流:开展国内多中心临床试验,建立国家科研数据平台,加强国际合作与交流,借鉴和吸收国际先进经验和技术,推动学科的发展。
【主编】

朴浩哲    辽宁省肿瘤医院

陈忠平    中山大学肿瘤防治中心

杨学军    北京清华长庚医院

【副主编】

吴劲松    复旦大学附属华山医院

张俊平    首都医科大学三博脑科医院

马   军    北京天坛医院

高献书    北京大学第一医院

【编委】(按姓氏拼音排序)

刘丕楠    北京天坛医院

徐建国    四川大学华西医院

林志雄    福建三博福能脑科医院

王贵怀    北京清华长庚医院

肖建平    中国医学科学院肿瘤医院

张   烨    辽宁省肿瘤医院

陈   一    辽宁省肿瘤医院

马玉超    中国医学科学院肿瘤医院

刘志勇    四川大学华西医院

荆林凯    北京清华长庚医院

陈思源    北京天坛医院

吴赞艺    福建医科大学附属第一医院

参考文献(References)

1.Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021;23(8):1231-51.

2.Duffau H. Long-term outcomes after supratotal resection of diffuse low-grade gliomas: a consecutive series with 11-year follow-up. Acta Neurochir (Wien). 2016;158(1):51-8.

3.Hervey-Jumper SL, Berger MS. Maximizing safe resection of low- and high-grade glioma. J Neurooncol. 2016;130(2):269-82.

4.Policicchio D, Ticca S, Dipellegrini G, Doda A, Muggianu G, Boccaletti R. Multimodal Surgical Management of Cerebral Lesions in Motor-Eloquent Areas Combining Intraoperative 3D Ultrasound with Neurophysiological Mapping. J Neurol Surg A Cent Eur Neurosurg. 2021;82(4):344-56.

5.Smith JS, Chang EF, Lamborn KR, Chang SM, Prados MD, Cha S, et al. Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol. 2008;26(8):1338-45.

6.Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA, et al. Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma. Cell. 2016;164(3):550-63.

7.Eckel-Passow JE, Lachance DH, Molinaro AM, Walsh KM, Decker PA, Sicotte H, et al. Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. N Engl J Med. 2015;372(26):2499-508.

8.Hou Z, Zhang K, Liu X, Fang S, Li L, Wang Y, et al. Molecular subtype impacts surgical resection in low-grade gliomas: A Chinese Glioma Genome Atlas database analysis. Cancer Lett. 2021;522:14-21.

9.Delev D, Heiland DH, Franco P, Reinacher P, Mader I, Staszewski O, et al. Surgical management of lower-grade glioma in the spotlight of the 2016 WHO classification system. J Neurooncol. 2019;141(1):223-33.

10.van den Bent MJ, Wefel JS, Schiff D, Taphoorn MJ, Jaeckle K, Junck L, et al. Response assessment in neuro-oncology (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas. Lancet Oncol. 2011;12(6):583-93.

11.Wijnenga MMJ, French PJ, Dubbink HJ, Dinjens WNM, Atmodimedjo PN, Kros JM, et al. The impact of surgery in molecularly defined low-grade glioma: an integrated clinical, radiological, and molecular analysis. Neuro Oncol. 2018;20(1):103-12.

12.Beiko J, Suki D, Hess KR, Fox BD, Cheung V, Cabral M, et al. IDH1 mutant malignant astrocytomas are more amenable to surgical resection and have a survival benefit associated with maximal surgical resection. Neuro Oncol. 2014;16(1):81-91.

13.McGirt MJ, Chaichana KL, Gathinji M, Attenello FJ, Than K, Olivi A, et al. Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J Neurosurg. 2009;110(1):156-62.

14.Molinaro AM, Hervey-Jumper S, Morshed RA, Young J, Han SJ, Chunduru P, et al. Association of Maximal Extent of Resection of Contrast-Enhanced and Non-Contrast-Enhanced Tumor With Survival Within Molecular Subgroups of Patients With Newly Diagnosed Glioblastoma. JAMA Oncol. 2020;6(4):495-503.

15.Wang P, Luo C, Hong PJ, Rui WT, Wu S. The Role of Surgery in IDH-Wild-Type Lower-Grade Gliomas: Threshold at a High Extent of Resection Should be Pursued. Neurosurgery. 2021;88(6):1136-44.

16.Hatoum R, Chen JS, Lavergne P, Shlobin NA, Wang A, Elkaim LM, et al. Extent of Tumor Resection and Survival in Pediatric Patients With High-Grade Gliomas: A Systematic Review and Meta-analysis. JAMA Netw Open. 2022;5(8):e2226551.

17.Patel T, Bander ED, Venn RA, Powell T, Cederquist GY, Schaefer PM, et al. The Role of Extent of Resection in IDH1 Wild-Type or Mutant Low-Grade Gliomas. Neurosurgery. 2018;82(6):808-14.

18.Nelson AJ, Zakaria R, Jenkinson MD, Brodbelt AR. Extent of resection predicts risk of progression in adult pilocytic astrocytoma. Br J Neurosurg. 2019;33(3):343-7.

19.Kanamori M, Kikuchi A, Watanabe M, Shibahara I, Saito R, Yamashita Y, et al. Rapid and sensitive intraoperative detection of mutations in the isocitrate dehydrogenase 1 and 2 genes during surgery for glioma. J Neurosurg. 2014;120(6):1288-97.

20.Ohka F, Yamamichi A, Kurimoto M, Motomura K, Tanahashi K, Suzuki H, et al. A novel all-in-one intraoperative genotyping system for IDH1-mutant glioma. Brain Tumor Pathol. 2017;34(2):91-7.

21.Avsar T, Sursal A, Turan G, Yigit BN, Altunsu D, Cantasir K, et al. Development of a Rapid and Sensitive IDH1/2 Mutation Detection Method for Glial Tumors and a Comparative Mutation Analysis of 236 Glial Tumor Samples. Mol Diagn Ther. 2020;24(3):327-38.

22.Diplas BH, Liu H, Yang R, Hansen LJ, Zachem AL, Zhao F, et al. Sensitive and rapid detection of TERT promoter and IDH mutations in diffuse gliomas. Neuro Oncol. 2019;21(4):440-50.

23.Santagata S, Eberlin LS, Norton I, Calligaris D, Feldman DR, Ide JL, et al. Intraoperative mass spectrometry mapping of an onco-metabolite to guide brain tumor surgery. Proc Natl Acad Sci U S A. 2014;111(30):11121-6.

24.Kanamori M, Maekawa M, Shibahara I, Saito R, Chonan M, Shimada M, et al. Rapid detection of mutation in isocitrate dehydrogenase 1 and 2 genes using mass spectrometry. Brain Tumor Pathol. 2018;35(2):90-6.

25.Pirro V, Alfaro CM, Jarmusch AK, Hattab EM, Cohen-Gadol AA, Cooks RG. Intraoperative assessment of tumor margins during glioma resection by desorption electrospray ionization-mass spectrometry. Proc Natl Acad Sci U S A. 2017;114(26):6700-5.

26.Xu H, Xia YK, Li CJ, Zhang JY, Liu Y, Yi W, et al. Rapid diagnosis of IDH1-mutated gliomas by 2-HG detection with gas chromatography mass spectrometry. Lab Invest. 2019;99(4):588-98.

27.Weller, M.; Wick, W.; Aldape, K.; Brada, M.; Berger, M.; Pfister, S. M.; Nishikawa, R.; Rosenthal, M.; Wen, P. Y.; Stupp, R.; Reifenberger, G. Glioma. Nat. Rev. Dis. Primer 2015, 1 (1), 15017. https://doi.org/10.1038/nrdp.2015.17.

28.Stupp, R.; Weller, M.; Belanger, K.; Bogdahn, U.; Ludwin, S. K.; Lacombe, D.; Mirimanoff, R. O. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005.

29.Molinaro, A. M.; Taylor, J. W.; Wiencke, J. K.; Wrensch, M. R. Genetic and Molecular Epidemiology of Adult Diffuse Glioma. Nat. Rev. Neurol. 2019, 15 (7), 405–417. https://doi.org/10.1038/s41582-019-0220-2.

30.Cohen, M. H.; Shen, Y. L.; Keegan, P.; Pazdur, R. FDA Drug Approval Summary: Bevacizumab (Avastin®) as Treatment of Recurrent Glioblastoma Multiforme. The Oncologist 2009, 14 (11), 1131–1138. https://doi.org/10.1634/theoncologist.2009-0121.

31.Ornelas, A. S.; Porter, A. B.; Sharma, A.; Knox, M. G.; Marks, L. A.; Wingerchuk, D. M.; O’Carroll, C. B. What Is the Role of Tumor-Treating Fields in Newly Diagnosed Glioblastoma? The Neurologist 2019, 24 (2), 71–73. https://doi.org/10.1097/NRL.0000000000000222.

32.Rominiyi, O.; Vanderlinden, A.; Clenton, S. J.; Bridgewater, C.; Al-Tamimi, Y.; Collis, S. J. Tumour Treating Fields Therapy for Glioblastoma: Current Advances and Future Directions. Br. J. Cancer 2021, 124 (4), 697–709. https://doi.org/10.1038/s41416-020-01136-5.

33.Zeng, J.; Li, X.; Sander, M.; Zhang, H.; Yan, G.; Lin, Y. Oncolytic Viro-Immunotherapy: An Emerging Option in the Treatment of Gliomas. Front. Immunol. 2021, 12, 721830. https://doi.org/10.3389/fimmu.2021.721830.

34.Todo, T.; Ito, H.; Ino, Y.; Ohtsu, H.; Ota, Y.; Shibahara, J.; Tanaka, M. Intratumoral Oncolytic Herpes Virus G47? for Residual or Recurrent Glioblastoma: A Phase 2 Trial. Nat. Med. 2022, 28 (8), 1630–1639. https://doi.org/10.1038/s41591-022-01897-x.

35.Tian, Y.; Xie, D.; Yang, L. Engineering Strategies to Enhance Oncolytic Viruses in Cancer Immunotherapy. Signal Transduct. Target. Ther. 2022, 7 (1), 117. https://doi.org/10.1038/s41392-022-00951-x.

36.Fudaba, H.; Wakimoto, H. Oncolytic Virus Therapy for Malignant Gliomas: Entering the New Era. Expert Opin. Biol. Ther. 2023, 23 (3), 269–282. https://doi.org/10.1080/14712598.2023.2184256.

37.Maroun, J.; Muñoz-Alía, M.; Ammayappan, A.; Schulze, A.; Peng, K.-W.; Russell, S. Designing and Building Oncolytic Viruses. Future Virol. 2017, 12 (4), 193–213. https://doi.org/10.2217/fvl-2016-0129.

38.Stojdl, D. F.; Lichty, B.; Knowles, S.; Marius, R.; Atkins, H.; Sonenberg, N.; Bell, J. C. Exploiting Tumor-Specific Defects in the Interferon Pathway with a Previously Unknown Oncolytic Virus. Nat. Med. 2000, 6 (7), 821–825. https://doi.org/10.1038/77558.

39.Strong, J. E. The Molecular Basis of Viral Oncolysis: Usurpation of the Ras Signaling Pathway by Reovirus. EMBO J. 1998, 17 (12), 3351–3362. https://doi.org/10.1093/emboj/17.12.3351.

40.Chandramohan, V.; Bryant, J. D.; Piao, H.; Keir, S. T.; Lipp, E. S.; Lefaivre, M.; Perkinson, K.; Bigner, D. D.; Gromeier, M.; McLendon, R. E. Validation of an Immunohistochemistry Assay for Detection of CD155, the Poliovirus Receptor, in Malignant Gliomas. Arch. Pathol. Lab. Med. 2017, 141 (12), 1697–1704. https://doi.org/10.5858/arpa.2016-0580-OA.

41.Kaufman, H. L.; Kohlhapp, F. J.; Zloza, A. Oncolytic Viruses: A New Class of Immunotherapy Drugs. Nat. Rev. Drug Discov. 2015, 14 (9), 642–662. https://doi.org/10.1038/nrd4663.

42.Elde, N. C.; Child, S. J.; Geballe, A. P.; Malik, H. S. Protein Kinase R Reveals an Evolutionary Model for Defeating Viral Mimicry. Nature 2009, 457 (7228), 485–489. https://doi.org/10.1038/nature07529.

43.Zamarin, D.; Holmgaard, R. B.; Subudhi, S. K.; Park, J. S.; Mansour, M.; Palese, P.; Merghoub, T.; Wolchok, J. D.; Allison, J. P. Localized Oncolytic Virotherapy Overcomes Systemic Tumor Resistance to Immune Checkpoint Blockade Immunotherapy. Sci. Transl. Med. 2014, 6 (226). https://doi.org/10.1126/scitranslmed.3008095.

44.De Graaf, J. F.; De Vor, L.; Fouchier, R. A. M.; Van Den Hoogen, B. G. Armed Oncolytic Viruses: A Kick-Start for Anti-Tumor Immunity. Cytokine Growth Factor Rev. 2018, 41, 28–39. https://doi.org/10.1016/j.cytogfr.2018.03.006.

45.Carpenter, A. B.; Carpenter, A. M.; Aiken, R.; Hanft, S. Oncolytic Virus in Gliomas: A Review of Human Clinical Investigations. Ann. Oncol. 2021, 32 (8), 968–982. https://doi.org/10.1016/j.annonc.2021.03.197.

46.Lauer, U. M.; Beil, J. Oncolytic Viruses: Challenges and Considerations in an Evolving Clinical Landscape. Future Oncol. Lond. Engl. 2022. https://doi.org/10.2217/fon-2022-0440.

47.Masemann, D.; Boergeling, Y.; Ludwig, S. Employing RNA Viruses to Fight Cancer: Novel Insights into Oncolytic Virotherapy. Biol. Chem. 2017, 398 (8), 891–909. https://doi.org/10.1515/hsz-2017-0103.

48.Durham, N. M.; Mulgrew, K.; McGlinchey, K.; Monks, N. R.; Ji, H.; Herbst, R.; Suzich, J.; Hammond, S. A.; Kelly, E. J. Oncolytic VSV Primes Differential Responses to Immuno-Oncology Therapy. Mol. Ther. J. Am. Soc. Gene Ther. 2017, 25 (8), 1917–1932. https://doi.org/10.1016/j.ymthe.2017.05.006.

49.Rehman, H.; Silk, A. W.; Kane, M. P.; Kaufman, H. L. Into the Clinic: Talimogene Laherparepvec (T-VEC), a First-in-Class Intratumoral Oncolytic Viral Therapy. J. Immunother. Cancer 2016, 4 (1), 53. https://doi.org/10.1186/s40425-016-0158-5.

50.Andtbacka, R. H. I.; Kaufman, H. L.; Collichio, F.; Amatruda, T.; Senzer, N.; Chesney, J.; Delman, K. A.; Spitler, L. E.; Puzanov, I.; Agarwala, S. S.; Milhem, M.; Cranmer, L.; Curti, B.; Lewis, K.; Ross, M.; Guthrie, T.; Linette, G. P.; Daniels, G. A.; Harrington, K.; Middleton, M. R.; Miller, W. H.; Zager, J. S.; Ye, Y.; Yao, B.; Li, A.; Doleman, S.; VanderWalde, A.; Gansert, J.; Coffin, R. S. Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma. J. Clin. Oncol. 2015, 33 (25), 2780–2788. https://doi.org/10.1200/JCO.2014.58.3377.

51.He, B.; Chou, J.; Brandimarti, R.; Mohr, I.; Gluzman, Y.; Roizman, B. Suppression of the Phenotype of Gamma(1)34.5- Herpes Simplex Virus 1: Failure of Activated RNA-Dependent Protein Kinase to Shut off Protein Synthesis Is Associated with a Deletion in the Domain of the Alpha47 Gene. J. Virol. 1997, 71 (8), 6049–6054. https://doi.org/10.1128/jvi.71.8.6049-6054.1997.

52.York, I. A.; Roop, C.; Andrews, D. W.; Riddell, S. R.; Graham, F. L.; Johnson, D. C. A Cytosolic Herpes Simplex Virus Protein Inhibits Antigen Presentation to CD8+ T Lymphocytes. Cell 1994, 77 (4), 525–535. https://doi.org/10.1016/0092-8674(94)90215-1.

53.Todo, T.; Martuza, R. L.; Rabkin, S. D.; Johnson, P. A. Oncolytic Herpes Simplex Virus Vector with Enhanced MHC Class I Presentation and Tumor Cell Killing. Proc. Natl. Acad. Sci. 2001, 98 (11), 6396–6401. https://doi.org/10.1073/pnas.101136398.

54.Kolte, D. Understanding the Association between Hypertensive Disorders of Pregnancy and Peripartum Cardiomyopathy: Understanding the Association between Hypertensive Disorders of Pregnancy and Peripartum Cardiomyopathy. Eur. J. Heart Fail. 2017, 19 (12), 1721–1722. https://doi.org/10.1002/ejhf.941.

55.Gromeier, M.; Alexander, L.; Wimmer, E. Internal Ribosomal Entry Site Substitution Eliminates Neurovirulence in Intergeneric Poliovirus Recombinants. Proc. Natl. Acad. Sci. 1996, 93 (6), 2370–2375. https://doi.org/10.1073/pnas.93.6.2370.

56.Gromeier, M.; Nair, S. K. Recombinant Poliovirus for Cancer Immunotherapy. 2017.

57.Merrill, M. K.; Dobrikova, E. Y.; Gromeier, M. Cell-Type-Specific Repression of Internal Ribosome Entry Site Activity by Double-Stranded RNA-Binding Protein 76. J. Virol. 2006, 80 (7), 3147–3156. https://doi.org/10.1128/JVI.80.7.3147-3156.2006.

58.VENNETI S, KAWAKIBI A R, JI S, et al. Clinical Efficacy of ONC201 in H3K27M-Mutant Diffuse Midline Gliomas Is Driven by Disruption of Integrated Metabolic and Epigenetic Pathways [J]. Cancer Discovery, 2023, 13(11): 2370-2393.

59.MA C, WANG L, SONG D, et al. Multimodal-based machine learning strategy for accurate and non-invasive prediction of intramedullary glioma grade and mutation status of molecular markers: a retrospective study [J]. BMC Medicine, 2023, 21(1): 

60.GRASSL N, POSCHKE I, LINDNER K, et al. A H3K27M-targeted vaccine in adults with diffuse midline glioma [J]. Nature Medicine, 2023, 29(10): 2586-2592.

61.OKONECHNIKOV K, CAMGÖZ A, CHAPMAN O, et al. 3D genome mapping identifies subgroup-specific chromosome conformations and tumor-dependency genes in ependymoma [J]. Nature Communications, 2023, 14(1): 

62.CHAI R C, YAN H, AN S Y, et al. Genomic profiling and prognostic factors of H3 K27M‐mutant spinal cord diffuse glioma [J]. Brain Pathology, 2023, 33(4): 

63.LI X, ANDRUSIVOVA Z, CZARNEWSKI P, et al. Profiling spatiotemporal gene expression of the developing human spinal cord and implications for ependymoma origin [J]. Nature Neuroscience, 2023, 26(5): 891-901.

64.HE B, ZHANG Y X, MENG Z, et al. Optical coherence tomography angiography with adaptive multi-time interval [J]. J Biophotonics, 2023, 16(5): 

65.CHENG L, ZHANG F, ZHAO X, et al. Mutational landscape of primary spinal cord astrocytoma [J]. J Pathol, 2023, 260(3): 317-328.

66.KATHRYN R. TAYLOR T B, ALEXA HUI. Glioma synapses recruit mechanisms of adaptive plasticity [J]. Nature, 2023, 623(7986): 366-374.

67.NIKLAS GRASSL L B, KRISTINE JÄHNE. A H3K27M-targeted vaccine in adults with diffuse midline glioma [J]. Nature Medicine, 2023, 29(2586-2592.

68.Asa, S.L., et al., Overview of the 2022 WHO Classification of Pituitary Tumors. Endocr Pathol, 2022. 33(1): p. 6-26.

69.Angelousi, A., et al., Immunotherapy for endocrine tumours: a clinician's perspective. Endocr Relat Cancer, 2024. 31(4).

70.Ilie, M.D., et al., Biological and Therapeutic Implications of the Tumor Microenvironment in Pituitary Adenomas. Endocr Rev, 2023. 44(2): p. 297-311.

71.Dzialach, L., et al., Prolactin-secreting pituitary adenomas: male-specific differences in pathogenesis, clinical presentation and treatment. Front Endocrinol (Lausanne), 2024. 15: p. 1338345.

72.Wang, Z., et al., Clinical application of combination [(11)C]C-methionine and [(13)N]N-ammonia PET/CT in recurrent functional pituitary adenomas with negative MRI or [(18)F]F-FDG PET/CT. BMC Endocr Disord, 2024. 24(1): p. 19.

73.Tritos, N.A., Pituitary adenomas: new insights, new therapeutic targets. Cell Res, 2023. 33(1): p. 3-4.

74.Osawa, I., et al., Utility of contrast-enhanced 3D STIR FLAIR imaging for evaluating pituitary adenomas at 3 Tesla. Eur J Radiol Open, 2023. 11: p. 100500.

75.Zhang, Y., et al., Preoperative volume of the optic chiasm is an easily obtained predictor for visual recovery of pituitary adenoma patients following endoscopic endonasal transsphenoidal surgery: a cohort study. Int J Surg, 2023. 109(4): p. 896-904.

76.Whyte, E., et al., Update on Current Evidence for the Diagnosis and Management of Nonfunctioning Pituitary Neuroendocrine Tumors. Endocrinol Metab (Seoul), 2023. 38(6): p. 631-654.

77.Wu, Z.B., The shift of therapeutic strategy for prolactinomas: surgery as the first-line option. Nat Rev Endocrinol, 2024.

78. 王雪宁,王建平.原发中枢神经系统淋巴瘤诊疗[J].中国血液流变学杂志,2022,32(4):644-653.DOI:10.3969/j.issn.1009-881X.2022.04.035.

79. Yuan X, Yu T, Zhao J, Jiang H, Hao Y, Lei W, Liang Y, Li B, Qian W. Analysis of the genomic landscape of primary central nervous system lymphoma using whole-genome sequencing in Chinese patients. Front Med. 2023 Oct;17(5):889-906. doi: 80.1007/s11684-023-0994-x. Epub 2023 Jul 7. PMID: 37418076.

81. Zuo J, Lei T, Zhong S, Zhou J, Liu R, Wu C, Li S. C-reactive protein levels, the prognostic nutritional index, and the lactate dehydrogenase-to-lymphocyte ratio are important prognostic factors in primary central nervous system lymphoma: a single-center study of 223 patients. Neurosurg Rev. 2023 Dec 19;47(1):17. doi: 10.1007/s10143-023-02248-1. PMID: 38112846; PMCID: PMC10730673.

82. Wu Z, Li Z, Qiu X, Zhong M, Ding T. Germline genetic variations in methotrexate pathway are associated with pharmacokinetics, outcome, and toxicity in patients with primary central nervous system lymphoma. Expert Rev Clin Pharmacol. 2023 Apr;16(4):371-381. doi: 10.1080/17512433.2023.2194630. Epub 2023 Mar 27. PMID: 36946320.

83. Zhong K, Shi Y, Gao Y, Zhang H, Zhang M, Zhang Q, Cen X, Xue M, Qin Y, Zhao Y, Zhang L, Liang R, Wang N, Xie Y, Yang Y, Liu A, Bao H, Wang J, Cao B, Zhang W, Zhang W. First-line induction chemotherapy with high-dose methotrexate versus teniposide in patients with newly diagnosed primary central nervous system lymphoma: a retrospective, multicenter cohort study. BMC Cancer. 2023 Aug 11;23(1):746. doi: 10.1186/s12885-023-11268-5. PMID: 37568079; PMCID: PMC10416388.

84. David KA, Sundaram S, Kim SH, Vaca R, Lin Y, Singer S, Malecek MK, Carter J, Zayac A, Kim MS, Reddy N, Ney D, Habib A, Strouse C, Graber J, Bachanova V, Salman S, Vendiola JA, Hossain N, Tsang M, Major A, Bond DA, Agrawal P, Mier-Hicks A, Torka P, Rajakumar P, Venugopal P, Berg S, Glantz M, Goldlust SA, Folstad M, Kumar P, Ollila TA, Cai J, Spurgeon S, Sieg A, Cleveland J, Chang J, Epperla N, Karmali R, Naik S, Martin P, Smith SM, Rubenstein J, Kahl B, Evens AM. Older patients with primary central nervous system lymphoma: Survival and prognostication across 20 U.S. cancer centers. Am J Hematol. 2023 Jun;98(6):900-912. doi: 10.1002/ajh.26919. Epub 2023 Apr 5. PMID: 36965007.

85.  Thomas-Joulié A, Houillier C, Antoni D, Créhange G, Jouglar E, Colin P, Benchalal M, Lang P, Alfonsi M, Hamidou H, Coutte A, Ahrweiller F, Dadoun N, Pointreau Y, Ammarguellat H, Bernier-Chastagner V, Belkacemi Y, Vieillot S, Hoang-Xuan K, Soussain C, Jacob J, Feuvret L. Brain radiotherapy in patients treated for a newly diagnosed primary central nervous system lymphoma: professional practice evaluation in 19 French centers. Acta Oncol. 2023 Jun;62(6):648-656. doi: 10.1080/0284186X.2023.2225146. Epub 2023 Jun 20. PMID: 37338525.

86. Karschnia P, Arrillaga-Romany IC, Eichler A, Forst DA, Gerstner E, Jordan JT, Ly I, Plotkin SR, Wang N, Martinez-Lage M, Winter SF, Tonn JC, Rejeski K, von Baumgarten L, Cahill DP, Nahed BV, Shankar GM, Abramson JS, Barnes JA, El-Jawahri A, Hochberg EP, Johnson PC, Soumerai JD, Takvorian RW, Chen YB, Frigault MJ, Dietrich J. Neurotoxicity and management of primary and secondary central nervous system lymphoma after adoptive immunotherapy with CD19-directed chimeric antigen receptor T-cells. Neuro Oncol. 2023 Dec 8;25(12):2239-2249. doi: 10.1093/neuonc/noad118. PMID: 37402650; PMCID: PMC10708936.

87. J Chen, MC Li, LK Chen, et al. Aumolertinib Plus Anlotinib in Advanced NSCLC with Brain Metastasis: A Single-arm, Phase II Study. 2023 WCLC #OA03

88.  Hou X, Zhou CZ, Wu GW, et al. Efficacy, Safety, and Health-Related Quality of Life with Camrelizumab Plus Pemetrexed and Carboplatin as First-Line treatment for Advanced Non-Squamous Non-Small-Cell Lung Cancer with Brain Metastases (CAP-BRAIN): A Multicentre, Open-Label, Single-Arm, Phase 2 Study. Journal of Thoracic Oncology. 2023; 18(6): 769-779.

89. Hou X, Li MC,Wu GW, et al. Gefitinib Plus Chemotherapy vs Gefitinib Alone in Untreated EGFR-MutantNon–Small Cell Lung Cancer in Patients With Brain MetastasesThe GAP BRAIN Open-Label, Randomized, Multicenter, Phase 3 Study. JAMA Network Open. 2023;6(2):e2255050.

90. Liu SYM, Dong XR, Wang Z, et al. Efficacy, safety and dose selection of AZD3759 in patients with untreated EGFR-mutated non-small-cell lung cancer and central nervous system metastases in China (CTONG1702-Arm 8): a multi-center, single-arm, phase 2 trial.EClinicalMedicine.2023;64: 102238.

91. Wu YL, et al. Randomized phase 3 study of first-line AZD3759 (zorifertinib) versus gefitinib or erlotinib in EGFR-mutant (EGFRm+) non–small-cell lung cancer (NSCLC) with central nervous system (CNS) metastasis. 2023 ASCO #9001.

92. Yang Z, Guo X, Yu X, et al. Stereotactic Radiotherapy or Whole Brain Radiotherapy Combined with Pyrotinib and Capecitabine in HER2-Positive Advanced Breast Cancer Patients with Brain Metastases (BROPTIMA): A Prospective, Phase II Single-arm Clinical Study. ASTRO 2023, Abstract#56165.

93. Yang Y, Deng L, Yang YF, et al. Efficacy and Safety of Combined Brain Radiotherapy and Immunotherapy in Non-Small-Cell Lung Cancer With Brain Metastases: A Systematic Review and Meta-Analysis. Clini Lung Cancer, 2021;23(2): 95-107.

94. Cagney DN, Lamba N, Sinha S, et al. Association of Neurosurgical Resection With Development of Pachymeningeal Seeding in Patients With Brain Metastases. JAMA Oncol. 2019;5(5):703-709.

95. Gondi V, Pugh SL, Tome WA, et al: Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): A phase II multi-institutional trial. J Clin Oncol. 2014;32: 3810-3816.

96. Brown PD, Gondi V, Pugh S, et al. Hippocampal Avoidance During Whole-Brain Radiotherapy Plus Memantine for Patients With Brain Metastases: Phase III Trial NRG Oncology CC001. J Clin Oncol. 2020;38(10):1019-1029.

97. Higgins KA, Curran WJ, Liu SV, et al. Patterns of Disease Progression after Carboplatin/Etoposide + Atezolizumab in Extensive-Stage Small-Cell Lung Cancer (ES-SCLC). Int J Radiat Oncol Biol Phys. 2020;108(5):1398.

98. Rusthoven CG, Yamamoto M, Bernhardt D, et al. Evaluation of First-line Radiosurgery vs Whole-Brain Radiotherapy for Small Cell Lung Cancer Brain Metastases: The FIRE-SCLC Cohort Study. JAMA Oncol. 2020;6(7):1028-1037.

99. Li BT, Smit EF, Goto Y, et al: Phase II trial of trastuzumab deruxtecan (T-DXd) in patients (Pts) with HER2-mutated (HER2m metastatic non-small cell lung cancer (NSCLC): Registrational data from DESTINY-Lung01. Ann Oncol 33, 2022 (suppl 7; abstr 976P)

100 Goto K, Goto Y, Kubo T, et al. Trastuzumab Deruxtecan in Patients With HER2-Mutant Metastatic Non-Small-Cell Lung Cancer: Primary Results From the Randomized, Phase II DESTINY-Lung02 Trial. J Clin Oncol. 2023.

101. Yu HA, Goto Y, Hayashi H, et al. HERTHENA-Lung01, a Phase II Trial of Patritumab Deruxtecan (HER3-DXd) in Epidermal Growth Factor Receptor-Mutated Non-Small-Cell Lung Cancer After Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Therapy and Platinum-Based Chemotherapy. J Clin Oncol. 2023.

102. Planchard D, et al. FLAURA2: safety and CNS outcomes of first-line osimertinib±chemotherapy in EGFRm advanced NSCLC.2023 ESMO. LBA68.

103. Hurvitz SA, et al. A pooled analysis of trastuzumab deruxtecan (T-DXd) in patients (pts) with HER2-positive (HER2+) metastatic breast cancer (mBC) with brain metastases (BMs) from DESTINY-Breast (DB) -01, -02, and -03. ESMO 377O.

104. Prabhu RS, Akinyelu T, Vaslow ZK, et al. Risk Factors for Progression and Toxic Effects After Preoperative Stereotactic Radiosurgery for Patients With Resected Brain Metastases. JAMA oncol. 2023;9(8):1066-1073.

105. McClelland S III, et al. Radiosurgery Dose Reduction for Brain Metastases on Immunotherapy (RADREMI): One-Year Safety and Efficacy Outcomes from a Multicenter Phase I Trial. 2023 ASTRO. Abstract#1256.