1.Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021;23(8):1231-51.
2.Duffau H. Long-term outcomes after supratotal resection of diffuse low-grade gliomas: a consecutive series with 11-year follow-up. Acta Neurochir (Wien). 2016;158(1):51-8.
3.Hervey-Jumper SL, Berger MS. Maximizing safe resection of low- and high-grade glioma. J Neurooncol. 2016;130(2):269-82.
4.Policicchio D, Ticca S, Dipellegrini G, Doda A, Muggianu G, Boccaletti R. Multimodal Surgical Management of Cerebral Lesions in Motor-Eloquent Areas Combining Intraoperative 3D Ultrasound with Neurophysiological Mapping. J Neurol Surg A Cent Eur Neurosurg. 2021;82(4):344-56.
5.Smith JS, Chang EF, Lamborn KR, Chang SM, Prados MD, Cha S, et al. Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol. 2008;26(8):1338-45.
6.Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA, et al. Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma. Cell. 2016;164(3):550-63.
7.Eckel-Passow JE, Lachance DH, Molinaro AM, Walsh KM, Decker PA, Sicotte H, et al. Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. N Engl J Med. 2015;372(26):2499-508.
8.Hou Z, Zhang K, Liu X, Fang S, Li L, Wang Y, et al. Molecular subtype impacts surgical resection in low-grade gliomas: A Chinese Glioma Genome Atlas database analysis. Cancer Lett. 2021;522:14-21.
9.Delev D, Heiland DH, Franco P, Reinacher P, Mader I, Staszewski O, et al. Surgical management of lower-grade glioma in the spotlight of the 2016 WHO classification system. J Neurooncol. 2019;141(1):223-33.
10.van den Bent MJ, Wefel JS, Schiff D, Taphoorn MJ, Jaeckle K, Junck L, et al. Response assessment in neuro-oncology (a report of the RANO group): assessment of outcome in trials of diffuse low-grade gliomas. Lancet Oncol. 2011;12(6):583-93.
11.Wijnenga MMJ, French PJ, Dubbink HJ, Dinjens WNM, Atmodimedjo PN, Kros JM, et al. The impact of surgery in molecularly defined low-grade glioma: an integrated clinical, radiological, and molecular analysis. Neuro Oncol. 2018;20(1):103-12.
12.Beiko J, Suki D, Hess KR, Fox BD, Cheung V, Cabral M, et al. IDH1 mutant malignant astrocytomas are more amenable to surgical resection and have a survival benefit associated with maximal surgical resection. Neuro Oncol. 2014;16(1):81-91.
13.McGirt MJ, Chaichana KL, Gathinji M, Attenello FJ, Than K, Olivi A, et al. Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J Neurosurg. 2009;110(1):156-62.
14.Molinaro AM, Hervey-Jumper S, Morshed RA, Young J, Han SJ, Chunduru P, et al. Association of Maximal Extent of Resection of Contrast-Enhanced and Non-Contrast-Enhanced Tumor With Survival Within Molecular Subgroups of Patients With Newly Diagnosed Glioblastoma. JAMA Oncol. 2020;6(4):495-503.
15.Wang P, Luo C, Hong PJ, Rui WT, Wu S. The Role of Surgery in IDH-Wild-Type Lower-Grade Gliomas: Threshold at a High Extent of Resection Should be Pursued. Neurosurgery. 2021;88(6):1136-44.
16.Hatoum R, Chen JS, Lavergne P, Shlobin NA, Wang A, Elkaim LM, et al. Extent of Tumor Resection and Survival in Pediatric Patients With High-Grade Gliomas: A Systematic Review and Meta-analysis. JAMA Netw Open. 2022;5(8):e2226551.
17.Patel T, Bander ED, Venn RA, Powell T, Cederquist GY, Schaefer PM, et al. The Role of Extent of Resection in IDH1 Wild-Type or Mutant Low-Grade Gliomas. Neurosurgery. 2018;82(6):808-14.
18.Nelson AJ, Zakaria R, Jenkinson MD, Brodbelt AR. Extent of resection predicts risk of progression in adult pilocytic astrocytoma. Br J Neurosurg. 2019;33(3):343-7.
19.Kanamori M, Kikuchi A, Watanabe M, Shibahara I, Saito R, Yamashita Y, et al. Rapid and sensitive intraoperative detection of mutations in the isocitrate dehydrogenase 1 and 2 genes during surgery for glioma. J Neurosurg. 2014;120(6):1288-97.
20.Ohka F, Yamamichi A, Kurimoto M, Motomura K, Tanahashi K, Suzuki H, et al. A novel all-in-one intraoperative genotyping system for IDH1-mutant glioma. Brain Tumor Pathol. 2017;34(2):91-7.
21.Avsar T, Sursal A, Turan G, Yigit BN, Altunsu D, Cantasir K, et al. Development of a Rapid and Sensitive IDH1/2 Mutation Detection Method for Glial Tumors and a Comparative Mutation Analysis of 236 Glial Tumor Samples. Mol Diagn Ther. 2020;24(3):327-38.
22.Diplas BH, Liu H, Yang R, Hansen LJ, Zachem AL, Zhao F, et al. Sensitive and rapid detection of TERT promoter and IDH mutations in diffuse gliomas. Neuro Oncol. 2019;21(4):440-50.
23.Santagata S, Eberlin LS, Norton I, Calligaris D, Feldman DR, Ide JL, et al. Intraoperative mass spectrometry mapping of an onco-metabolite to guide brain tumor surgery. Proc Natl Acad Sci U S A. 2014;111(30):11121-6.
24.Kanamori M, Maekawa M, Shibahara I, Saito R, Chonan M, Shimada M, et al. Rapid detection of mutation in isocitrate dehydrogenase 1 and 2 genes using mass spectrometry. Brain Tumor Pathol. 2018;35(2):90-6.
25.Pirro V, Alfaro CM, Jarmusch AK, Hattab EM, Cohen-Gadol AA, Cooks RG. Intraoperative assessment of tumor margins during glioma resection by desorption electrospray ionization-mass spectrometry. Proc Natl Acad Sci U S A. 2017;114(26):6700-5.
26.Xu H, Xia YK, Li CJ, Zhang JY, Liu Y, Yi W, et al. Rapid diagnosis of IDH1-mutated gliomas by 2-HG detection with gas chromatography mass spectrometry. Lab Invest. 2019;99(4):588-98.
27.Weller, M.; Wick, W.; Aldape, K.; Brada, M.; Berger, M.; Pfister, S. M.; Nishikawa, R.; Rosenthal, M.; Wen, P. Y.; Stupp, R.; Reifenberger, G. Glioma. Nat. Rev. Dis. Primer 2015, 1 (1), 15017. https://doi.org/10.1038/nrdp.2015.17.
28.Stupp, R.; Weller, M.; Belanger, K.; Bogdahn, U.; Ludwin, S. K.; Lacombe, D.; Mirimanoff, R. O. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005.
29.Molinaro, A. M.; Taylor, J. W.; Wiencke, J. K.; Wrensch, M. R. Genetic and Molecular Epidemiology of Adult Diffuse Glioma. Nat. Rev. Neurol. 2019, 15 (7), 405–417. https://doi.org/10.1038/s41582-019-0220-2.
30.Cohen, M. H.; Shen, Y. L.; Keegan, P.; Pazdur, R. FDA Drug Approval Summary: Bevacizumab (Avastin®) as Treatment of Recurrent Glioblastoma Multiforme. The Oncologist 2009, 14 (11), 1131–1138. https://doi.org/10.1634/theoncologist.2009-0121.
31.Ornelas, A. S.; Porter, A. B.; Sharma, A.; Knox, M. G.; Marks, L. A.; Wingerchuk, D. M.; O’Carroll, C. B. What Is the Role of Tumor-Treating Fields in Newly Diagnosed Glioblastoma? The Neurologist 2019, 24 (2), 71–73. https://doi.org/10.1097/NRL.0000000000000222.
32.Rominiyi, O.; Vanderlinden, A.; Clenton, S. J.; Bridgewater, C.; Al-Tamimi, Y.; Collis, S. J. Tumour Treating Fields Therapy for Glioblastoma: Current Advances and Future Directions. Br. J. Cancer 2021, 124 (4), 697–709. https://doi.org/10.1038/s41416-020-01136-5.
33.Zeng, J.; Li, X.; Sander, M.; Zhang, H.; Yan, G.; Lin, Y. Oncolytic Viro-Immunotherapy: An Emerging Option in the Treatment of Gliomas. Front. Immunol. 2021, 12, 721830. https://doi.org/10.3389/fimmu.2021.721830.
34.Todo, T.; Ito, H.; Ino, Y.; Ohtsu, H.; Ota, Y.; Shibahara, J.; Tanaka, M. Intratumoral Oncolytic Herpes Virus G47? for Residual or Recurrent Glioblastoma: A Phase 2 Trial. Nat. Med. 2022, 28 (8), 1630–1639. https://doi.org/10.1038/s41591-022-01897-x.
35.Tian, Y.; Xie, D.; Yang, L. Engineering Strategies to Enhance Oncolytic Viruses in Cancer Immunotherapy. Signal Transduct. Target. Ther. 2022, 7 (1), 117. https://doi.org/10.1038/s41392-022-00951-x.
36.Fudaba, H.; Wakimoto, H. Oncolytic Virus Therapy for Malignant Gliomas: Entering the New Era. Expert Opin. Biol. Ther. 2023, 23 (3), 269–282. https://doi.org/10.1080/14712598.2023.2184256.
37.Maroun, J.; Muñoz-Alía, M.; Ammayappan, A.; Schulze, A.; Peng, K.-W.; Russell, S. Designing and Building Oncolytic Viruses. Future Virol. 2017, 12 (4), 193–213. https://doi.org/10.2217/fvl-2016-0129.
38.Stojdl, D. F.; Lichty, B.; Knowles, S.; Marius, R.; Atkins, H.; Sonenberg, N.; Bell, J. C. Exploiting Tumor-Specific Defects in the Interferon Pathway with a Previously Unknown Oncolytic Virus. Nat. Med. 2000, 6 (7), 821–825. https://doi.org/10.1038/77558.
39.Strong, J. E. The Molecular Basis of Viral Oncolysis: Usurpation of the Ras Signaling Pathway by Reovirus. EMBO J. 1998, 17 (12), 3351–3362. https://doi.org/10.1093/emboj/17.12.3351.
40.Chandramohan, V.; Bryant, J. D.; Piao, H.; Keir, S. T.; Lipp, E. S.; Lefaivre, M.; Perkinson, K.; Bigner, D. D.; Gromeier, M.; McLendon, R. E. Validation of an Immunohistochemistry Assay for Detection of CD155, the Poliovirus Receptor, in Malignant Gliomas. Arch. Pathol. Lab. Med. 2017, 141 (12), 1697–1704. https://doi.org/10.5858/arpa.2016-0580-OA.
41.Kaufman, H. L.; Kohlhapp, F. J.; Zloza, A. Oncolytic Viruses: A New Class of Immunotherapy Drugs. Nat. Rev. Drug Discov. 2015, 14 (9), 642–662. https://doi.org/10.1038/nrd4663.
42.Elde, N. C.; Child, S. J.; Geballe, A. P.; Malik, H. S. Protein Kinase R Reveals an Evolutionary Model for Defeating Viral Mimicry. Nature 2009, 457 (7228), 485–489. https://doi.org/10.1038/nature07529.
43.Zamarin, D.; Holmgaard, R. B.; Subudhi, S. K.; Park, J. S.; Mansour, M.; Palese, P.; Merghoub, T.; Wolchok, J. D.; Allison, J. P. Localized Oncolytic Virotherapy Overcomes Systemic Tumor Resistance to Immune Checkpoint Blockade Immunotherapy. Sci. Transl. Med. 2014, 6 (226). https://doi.org/10.1126/scitranslmed.3008095.
44.De Graaf, J. F.; De Vor, L.; Fouchier, R. A. M.; Van Den Hoogen, B. G. Armed Oncolytic Viruses: A Kick-Start for Anti-Tumor Immunity. Cytokine Growth Factor Rev. 2018, 41, 28–39. https://doi.org/10.1016/j.cytogfr.2018.03.006.
45.Carpenter, A. B.; Carpenter, A. M.; Aiken, R.; Hanft, S. Oncolytic Virus in Gliomas: A Review of Human Clinical Investigations. Ann. Oncol. 2021, 32 (8), 968–982. https://doi.org/10.1016/j.annonc.2021.03.197.
46.Lauer, U. M.; Beil, J. Oncolytic Viruses: Challenges and Considerations in an Evolving Clinical Landscape. Future Oncol. Lond. Engl. 2022. https://doi.org/10.2217/fon-2022-0440.
47.Masemann, D.; Boergeling, Y.; Ludwig, S. Employing RNA Viruses to Fight Cancer: Novel Insights into Oncolytic Virotherapy. Biol. Chem. 2017, 398 (8), 891–909. https://doi.org/10.1515/hsz-2017-0103.
48.Durham, N. M.; Mulgrew, K.; McGlinchey, K.; Monks, N. R.; Ji, H.; Herbst, R.; Suzich, J.; Hammond, S. A.; Kelly, E. J. Oncolytic VSV Primes Differential Responses to Immuno-Oncology Therapy. Mol. Ther. J. Am. Soc. Gene Ther. 2017, 25 (8), 1917–1932. https://doi.org/10.1016/j.ymthe.2017.05.006.
49.Rehman, H.; Silk, A. W.; Kane, M. P.; Kaufman, H. L. Into the Clinic: Talimogene Laherparepvec (T-VEC), a First-in-Class Intratumoral Oncolytic Viral Therapy. J. Immunother. Cancer 2016, 4 (1), 53. https://doi.org/10.1186/s40425-016-0158-5.
50.Andtbacka, R. H. I.; Kaufman, H. L.; Collichio, F.; Amatruda, T.; Senzer, N.; Chesney, J.; Delman, K. A.; Spitler, L. E.; Puzanov, I.; Agarwala, S. S.; Milhem, M.; Cranmer, L.; Curti, B.; Lewis, K.; Ross, M.; Guthrie, T.; Linette, G. P.; Daniels, G. A.; Harrington, K.; Middleton, M. R.; Miller, W. H.; Zager, J. S.; Ye, Y.; Yao, B.; Li, A.; Doleman, S.; VanderWalde, A.; Gansert, J.; Coffin, R. S. Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma. J. Clin. Oncol. 2015, 33 (25), 2780–2788. https://doi.org/10.1200/JCO.2014.58.3377.
51.He, B.; Chou, J.; Brandimarti, R.; Mohr, I.; Gluzman, Y.; Roizman, B. Suppression of the Phenotype of Gamma(1)34.5- Herpes Simplex Virus 1: Failure of Activated RNA-Dependent Protein Kinase to Shut off Protein Synthesis Is Associated with a Deletion in the Domain of the Alpha47 Gene. J. Virol. 1997, 71 (8), 6049–6054. https://doi.org/10.1128/jvi.71.8.6049-6054.1997.
52.York, I. A.; Roop, C.; Andrews, D. W.; Riddell, S. R.; Graham, F. L.; Johnson, D. C. A Cytosolic Herpes Simplex Virus Protein Inhibits Antigen Presentation to CD8+ T Lymphocytes. Cell 1994, 77 (4), 525–535. https://doi.org/10.1016/0092-8674(94)90215-1.
53.Todo, T.; Martuza, R. L.; Rabkin, S. D.; Johnson, P. A. Oncolytic Herpes Simplex Virus Vector with Enhanced MHC Class I Presentation and Tumor Cell Killing. Proc. Natl. Acad. Sci. 2001, 98 (11), 6396–6401. https://doi.org/10.1073/pnas.101136398.
54.Kolte, D. Understanding the Association between Hypertensive Disorders of Pregnancy and Peripartum Cardiomyopathy: Understanding the Association between Hypertensive Disorders of Pregnancy and Peripartum Cardiomyopathy. Eur. J. Heart Fail. 2017, 19 (12), 1721–1722. https://doi.org/10.1002/ejhf.941.
55.Gromeier, M.; Alexander, L.; Wimmer, E. Internal Ribosomal Entry Site Substitution Eliminates Neurovirulence in Intergeneric Poliovirus Recombinants. Proc. Natl. Acad. Sci. 1996, 93 (6), 2370–2375. https://doi.org/10.1073/pnas.93.6.2370.
56.Gromeier, M.; Nair, S. K. Recombinant Poliovirus for Cancer Immunotherapy. 2017.
57.Merrill, M. K.; Dobrikova, E. Y.; Gromeier, M. Cell-Type-Specific Repression of Internal Ribosome Entry Site Activity by Double-Stranded RNA-Binding Protein 76. J. Virol. 2006, 80 (7), 3147–3156. https://doi.org/10.1128/JVI.80.7.3147-3156.2006.
58.VENNETI S, KAWAKIBI A R, JI S, et al. Clinical Efficacy of ONC201 in H3K27M-Mutant Diffuse Midline Gliomas Is Driven by Disruption of Integrated Metabolic and Epigenetic Pathways [J]. Cancer Discovery, 2023, 13(11): 2370-2393.
59.MA C, WANG L, SONG D, et al. Multimodal-based machine learning strategy for accurate and non-invasive prediction of intramedullary glioma grade and mutation status of molecular markers: a retrospective study [J]. BMC Medicine, 2023, 21(1):
60.GRASSL N, POSCHKE I, LINDNER K, et al. A H3K27M-targeted vaccine in adults with diffuse midline glioma [J]. Nature Medicine, 2023, 29(10): 2586-2592.
61.OKONECHNIKOV K, CAMGÖZ A, CHAPMAN O, et al. 3D genome mapping identifies subgroup-specific chromosome conformations and tumor-dependency genes in ependymoma [J]. Nature Communications, 2023, 14(1):
62.CHAI R C, YAN H, AN S Y, et al. Genomic profiling and prognostic factors of H3 K27M‐mutant spinal cord diffuse glioma [J]. Brain Pathology, 2023, 33(4):
63.LI X, ANDRUSIVOVA Z, CZARNEWSKI P, et al. Profiling spatiotemporal gene expression of the developing human spinal cord and implications for ependymoma origin [J]. Nature Neuroscience, 2023, 26(5): 891-901.
64.HE B, ZHANG Y X, MENG Z, et al. Optical coherence tomography angiography with adaptive multi-time interval [J]. J Biophotonics, 2023, 16(5):
66.KATHRYN R. TAYLOR T B, ALEXA HUI. Glioma synapses recruit mechanisms of adaptive plasticity [J]. Nature, 2023, 623(7986): 366-374.
67.NIKLAS GRASSL L B, KRISTINE JÄHNE. A H3K27M-targeted vaccine in adults with diffuse midline glioma [J]. Nature Medicine, 2023, 29(2586-2592.
68.Asa, S.L., et al., Overview of the 2022 WHO Classification of Pituitary Tumors. Endocr Pathol, 2022. 33(1): p. 6-26.
69.Angelousi, A., et al., Immunotherapy for endocrine tumours: a clinician's perspective. Endocr Relat Cancer, 2024. 31(4).
70.Ilie, M.D., et al., Biological and Therapeutic Implications of the Tumor Microenvironment in Pituitary Adenomas. Endocr Rev, 2023. 44(2): p. 297-311.
71.Dzialach, L., et al., Prolactin-secreting pituitary adenomas: male-specific differences in pathogenesis, clinical presentation and treatment. Front Endocrinol (Lausanne), 2024. 15: p. 1338345.
72.Wang, Z., et al., Clinical application of combination [(11)C]C-methionine and [(13)N]N-ammonia PET/CT in recurrent functional pituitary adenomas with negative MRI or [(18)F]F-FDG PET/CT. BMC Endocr Disord, 2024. 24(1): p. 19.
73.Tritos, N.A., Pituitary adenomas: new insights, new therapeutic targets. Cell Res, 2023. 33(1): p. 3-4.
74.Osawa, I., et al., Utility of contrast-enhanced 3D STIR FLAIR imaging for evaluating pituitary adenomas at 3 Tesla. Eur J Radiol Open, 2023. 11: p. 100500.
75.Zhang, Y., et al., Preoperative volume of the optic chiasm is an easily obtained predictor for visual recovery of pituitary adenoma patients following endoscopic endonasal transsphenoidal surgery: a cohort study. Int J Surg, 2023. 109(4): p. 896-904.
76.Whyte, E., et al., Update on Current Evidence for the Diagnosis and Management of Nonfunctioning Pituitary Neuroendocrine Tumors. Endocrinol Metab (Seoul), 2023. 38(6): p. 631-654.
77.Wu, Z.B., The shift of therapeutic strategy for prolactinomas: surgery as the first-line option. Nat Rev Endocrinol, 2024.
79. Yuan X, Yu T, Zhao J, Jiang H, Hao Y, Lei W, Liang Y, Li B, Qian W. Analysis of the genomic landscape of primary central nervous system lymphoma using whole-genome sequencing in Chinese patients. Front Med. 2023 Oct;17(5):889-906. doi: 80.1007/s11684-023-0994-x. Epub 2023 Jul 7. PMID: 37418076.
81. Zuo J, Lei T, Zhong S, Zhou J, Liu R, Wu C, Li S. C-reactive protein levels, the prognostic nutritional index, and the lactate dehydrogenase-to-lymphocyte ratio are important prognostic factors in primary central nervous system lymphoma: a single-center study of 223 patients. Neurosurg Rev. 2023 Dec 19;47(1):17. doi: 10.1007/s10143-023-02248-1. PMID: 38112846; PMCID: PMC10730673.
82. Wu Z, Li Z, Qiu X, Zhong M, Ding T. Germline genetic variations in methotrexate pathway are associated with pharmacokinetics, outcome, and toxicity in patients with primary central nervous system lymphoma. Expert Rev Clin Pharmacol. 2023 Apr;16(4):371-381. doi: 10.1080/17512433.2023.2194630. Epub 2023 Mar 27. PMID: 36946320.
83. Zhong K, Shi Y, Gao Y, Zhang H, Zhang M, Zhang Q, Cen X, Xue M, Qin Y, Zhao Y, Zhang L, Liang R, Wang N, Xie Y, Yang Y, Liu A, Bao H, Wang J, Cao B, Zhang W, Zhang W. First-line induction chemotherapy with high-dose methotrexate versus teniposide in patients with newly diagnosed primary central nervous system lymphoma: a retrospective, multicenter cohort study. BMC Cancer. 2023 Aug 11;23(1):746. doi: 10.1186/s12885-023-11268-5. PMID: 37568079; PMCID: PMC10416388.
84. David KA, Sundaram S, Kim SH, Vaca R, Lin Y, Singer S, Malecek MK, Carter J, Zayac A, Kim MS, Reddy N, Ney D, Habib A, Strouse C, Graber J, Bachanova V, Salman S, Vendiola JA, Hossain N, Tsang M, Major A, Bond DA, Agrawal P, Mier-Hicks A, Torka P, Rajakumar P, Venugopal P, Berg S, Glantz M, Goldlust SA, Folstad M, Kumar P, Ollila TA, Cai J, Spurgeon S, Sieg A, Cleveland J, Chang J, Epperla N, Karmali R, Naik S, Martin P, Smith SM, Rubenstein J, Kahl B, Evens AM. Older patients with primary central nervous system lymphoma: Survival and prognostication across 20 U.S. cancer centers. Am J Hematol. 2023 Jun;98(6):900-912. doi: 10.1002/ajh.26919. Epub 2023 Apr 5. PMID: 36965007.
85. Thomas-Joulié A, Houillier C, Antoni D, Créhange G, Jouglar E, Colin P, Benchalal M, Lang P, Alfonsi M, Hamidou H, Coutte A, Ahrweiller F, Dadoun N, Pointreau Y, Ammarguellat H, Bernier-Chastagner V, Belkacemi Y, Vieillot S, Hoang-Xuan K, Soussain C, Jacob J, Feuvret L. Brain radiotherapy in patients treated for a newly diagnosed primary central nervous system lymphoma: professional practice evaluation in 19 French centers. Acta Oncol. 2023 Jun;62(6):648-656. doi: 10.1080/0284186X.2023.2225146. Epub 2023 Jun 20. PMID: 37338525.
86. Karschnia P, Arrillaga-Romany IC, Eichler A, Forst DA, Gerstner E, Jordan JT, Ly I, Plotkin SR, Wang N, Martinez-Lage M, Winter SF, Tonn JC, Rejeski K, von Baumgarten L, Cahill DP, Nahed BV, Shankar GM, Abramson JS, Barnes JA, El-Jawahri A, Hochberg EP, Johnson PC, Soumerai JD, Takvorian RW, Chen YB, Frigault MJ, Dietrich J. Neurotoxicity and management of primary and secondary central nervous system lymphoma after adoptive immunotherapy with CD19-directed chimeric antigen receptor T-cells. Neuro Oncol. 2023 Dec 8;25(12):2239-2249. doi: 10.1093/neuonc/noad118. PMID: 37402650; PMCID: PMC10708936.
87. J Chen, MC Li, LK Chen, et al. Aumolertinib Plus Anlotinib in Advanced NSCLC with Brain Metastasis: A Single-arm, Phase II Study. 2023 WCLC #OA03
88. Hou X, Zhou CZ, Wu GW, et al. Efficacy, Safety, and Health-Related Quality of Life with Camrelizumab Plus Pemetrexed and Carboplatin as First-Line treatment for Advanced Non-Squamous Non-Small-Cell Lung Cancer with Brain Metastases (CAP-BRAIN): A Multicentre, Open-Label, Single-Arm, Phase 2 Study. Journal of Thoracic Oncology. 2023; 18(6): 769-779.
89. Hou X, Li MC,Wu GW, et al. Gefitinib Plus Chemotherapy vs Gefitinib Alone in Untreated EGFR-MutantNon–Small Cell Lung Cancer in Patients With Brain MetastasesThe GAP BRAIN Open-Label, Randomized, Multicenter, Phase 3 Study. JAMA Network Open. 2023;6(2):e2255050.
90. Liu SYM, Dong XR, Wang Z, et al. Efficacy, safety and dose selection of AZD3759 in patients with untreated EGFR-mutated non-small-cell lung cancer and central nervous system metastases in China (CTONG1702-Arm 8): a multi-center, single-arm, phase 2 trial.EClinicalMedicine.2023;64: 102238.
91. Wu YL, et al. Randomized phase 3 study of first-line AZD3759 (zorifertinib) versus gefitinib or erlotinib in EGFR-mutant (EGFRm+) non–small-cell lung cancer (NSCLC) with central nervous system (CNS) metastasis. 2023 ASCO #9001.
92. Yang Z, Guo X, Yu X, et al. Stereotactic Radiotherapy or Whole Brain Radiotherapy Combined with Pyrotinib and Capecitabine in HER2-Positive Advanced Breast Cancer Patients with Brain Metastases (BROPTIMA): A Prospective, Phase II Single-arm Clinical Study. ASTRO 2023, Abstract#56165.
93. Yang Y, Deng L, Yang YF, et al. Efficacy and Safety of Combined Brain Radiotherapy and Immunotherapy in Non-Small-Cell Lung Cancer With Brain Metastases: A Systematic Review and Meta-Analysis. Clini Lung Cancer, 2021;23(2): 95-107.
94. Cagney DN, Lamba N, Sinha S, et al. Association of Neurosurgical Resection With Development of Pachymeningeal Seeding in Patients With Brain Metastases. JAMA Oncol. 2019;5(5):703-709.
95. Gondi V, Pugh SL, Tome WA, et al: Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): A phase II multi-institutional trial. J Clin Oncol. 2014;32: 3810-3816.
96. Brown PD, Gondi V, Pugh S, et al. Hippocampal Avoidance During Whole-Brain Radiotherapy Plus Memantine for Patients With Brain Metastases: Phase III Trial NRG Oncology CC001. J Clin Oncol. 2020;38(10):1019-1029.
97. Higgins KA, Curran WJ, Liu SV, et al. Patterns of Disease Progression after Carboplatin/Etoposide + Atezolizumab in Extensive-Stage Small-Cell Lung Cancer (ES-SCLC). Int J Radiat Oncol Biol Phys. 2020;108(5):1398.
98. Rusthoven CG, Yamamoto M, Bernhardt D, et al. Evaluation of First-line Radiosurgery vs Whole-Brain Radiotherapy for Small Cell Lung Cancer Brain Metastases: The FIRE-SCLC Cohort Study. JAMA Oncol. 2020;6(7):1028-1037.
99. Li BT, Smit EF, Goto Y, et al: Phase II trial of trastuzumab deruxtecan (T-DXd) in patients (Pts) with HER2-mutated (HER2m metastatic non-small cell lung cancer (NSCLC): Registrational data from DESTINY-Lung01. Ann Oncol 33, 2022 (suppl 7; abstr 976P)
100 Goto K, Goto Y, Kubo T, et al. Trastuzumab Deruxtecan in Patients With HER2-Mutant Metastatic Non-Small-Cell Lung Cancer: Primary Results From the Randomized, Phase II DESTINY-Lung02 Trial. J Clin Oncol. 2023.
101. Yu HA, Goto Y, Hayashi H, et al. HERTHENA-Lung01, a Phase II Trial of Patritumab Deruxtecan (HER3-DXd) in Epidermal Growth Factor Receptor-Mutated Non-Small-Cell Lung Cancer After Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor Therapy and Platinum-Based Chemotherapy. J Clin Oncol. 2023.
102. Planchard D, et al. FLAURA2: safety and CNS outcomes of first-line osimertinib±chemotherapy in EGFRm advanced NSCLC.2023 ESMO. LBA68.
103. Hurvitz SA, et al. A pooled analysis of trastuzumab deruxtecan (T-DXd) in patients (pts) with HER2-positive (HER2+) metastatic breast cancer (mBC) with brain metastases (BMs) from DESTINY-Breast (DB) -01, -02, and -03. ESMO 377O.
104. Prabhu RS, Akinyelu T, Vaslow ZK, et al. Risk Factors for Progression and Toxic Effects After Preoperative Stereotactic Radiosurgery for Patients With Resected Brain Metastases. JAMA oncol. 2023;9(8):1066-1073.
105. McClelland S III, et al. Radiosurgery Dose Reduction for Brain Metastases on Immunotherapy (RADREMI): One-Year Safety and Efficacy Outcomes from a Multicenter Phase I Trial. 2023 ASTRO. Abstract#1256.