光动力治疗下的肿瘤细胞反应

过去25年来,PDT作为治疗实体瘤的临床选择被广为接受。它依赖于光敏剂靶向积累,一定的时间间隔(DLI),及特定波长的光激活,产生光化学反应特异性损伤肿瘤组织[1]。长DLI促进光敏剂在细胞间中的最佳扩散浓度,短DLI主要靶向肿瘤血管系统[2]。同时,PDT的治疗效果高度依赖于活性氧(ROS)氧化损伤所引发的细胞和分子机制。由于ROS的半衰期短,扩散能力有限,光敏剂在照射时的定位在很大程度上决定了氧化损伤发生的位置[3-5]ROS的产生与细胞毒性或损伤修复之间的不平衡会导致氧化应激,最终触发不同的细胞死亡机制。此外,细胞靶向的PDT对癌细胞有直接细胞毒作用,光敏剂的细胞内定位是一个关键的决定因素[6]。通常较多的疏水光敏剂聚集在细胞器膜内,例如内质网(ER)、高尔基体(GA)/或线粒体中,而亲水光敏剂更多地经内吞途径进入细胞质。光敏剂细胞内积累的方式对肿瘤细胞应激适应和细胞死亡机制有很大影响。最后,血管靶向PDT方案有利于肿瘤血管网络的破坏,通常与广泛坏死相关。

随着肿瘤细胞死亡机制的研究不断增多,新的机制和信号通路不断被发现。不同形式的细胞死亡非常复杂,有时存在重叠现象,这使得识别它们成为一项挑战。在PDT治疗条件下,肿瘤细胞凋亡,自噬和坏死是研究最广泛的死亡方式。通常情况下,同一光敏剂可根据处理条件诱导这三种细胞死亡机制:强光损伤(高光敏剂浓度和/或高剂量的光)诱导坏死;中度损伤有望诱导调节性细胞死亡模式(如细胞凋亡);轻度损伤诱导自噬。综合来讲,在光子量较高的肿瘤表面,以及更接近肿瘤血管的区域,氧化应激更强,从而产生非调节性细胞死亡;在较深的区域,远离血管的细胞可能会发生调节性细胞死亡;在产生较少ROS的区域可能会发生自噬。研究表明PDT激活先天和适应性免疫反应,有助于肿瘤的根除[7]。对PDT损伤的探索发现其可进一步触发其他调节性细胞死亡机制[8,9],例如癌细胞死亡和免疫原性之间的联系日益明确,并有望通过长期控制肿瘤形成抗肿瘤系统免疫。这意味着,患者体内经PDT处理后死亡的癌细胞本身可能发挥疫苗的作用。这无疑是一种PDT诱导的癌细胞死亡新方式——免疫原性死亡(ICD)。PDT治疗肿瘤会促进多种促炎细胞因子(主要是促炎细胞因子IL6)释放、中性粒细胞肿瘤浸润、中性粒细胞和补体激活,从而引发强烈的急性炎症反应[10-13]。这些观察结果与最近的发现一致,即ICD可引发类似病原体的趋化因子反应[14]

可见,深入研究PDT氧化应激下细胞死亡机制,对于理解免疫系统的激活至关重要,并最终使PDT成为更有吸引力的肿瘤治疗选择。


参考文献

[1]J.M. Dabrowski, L.G. Arnaut, Photodynamic therapy (PDT) of cancer: from local to systemic treatment, Photochem. Photobiol. Sci. 14 (2015) 1765–1780.

[2]Chen B,Pogue BW,Hoopes PJ, et al.Vascular and cellular targeting for photodynamic therapy, Crit. Rev. Eukaryot. Gene Expr. 16 (2006) 279–305.

[3] D. Kessel, Subcellular targeting as a determinant of the efficacy of photodynamic therapy, Photochem. Photobiol. 93 (2017) 609–612.

[4] I. Moserova, J. Kralova, Role of ER stress response in photodynamic therapy: ROS generated in different subcellular compartments trigger diverse cell death pathways, PLoS One 7 (2012) e32972.

[5] D. Kessel, Subcellular targets for photodynamic therapy: implications for initiation of apoptosis and autophagy, J. Natl. Compr. Cancer Netw. 10 (Suppl. 2) (2012) S56–S59.

[6] M. Krzykawska-Serda, J.M. Dabrowski, L.G. Arnaut, M. Szczygiel, K. Urbanska,

G. Stochel, M. Elas, The role of strong hypoxia in tumors after treatment in the

outcome of bacteriochlorin-based photodynamic therapy, Free Radic. Biol. Med.

73 (2014) 239–251.

[7] A.P. Castano, P. Mroz, M.R. Hamblin, Photodynamic therapy and anti-tumour

immunity, Nat. Rev. Cancer 6 (2006) 535–545.

[8] J. Piette, Signalling pathway activation by photodynamic therapy: NF-kappaB at the crossroad between oncology and immunology, Photochem. Photobiol. Sci. 14 (2015) 1510–1517.

[9] P. Mroz, A. Yaroslavsky, G.B. Kharkwal, M.R. Hamblin, Cell death pathways in

photodynamic therapy of cancer, Cancers (Basel) 3 (2011) 2516–2539.

[10] L.H. Wei, H. Baumann, E. Tracy, Y. Wang, A. Hutson, S. Rose-John,

B.W. Henderson, Interleukin-6 trans signalling enhances photodynamic therapy by

modulating cell cycling, Br. J. Cancer 97 (2007) 1513–1522.

[11] P.C. Kousis, B.W. Henderson, P.G. Maier, S.O. Gollnick, Photodynamic therapy

enhancement of antitumor immunity is regulated by neutrophils, Cancer Res. 67

(2007) 10501–10510.

[12] I. Cecic, M. Korbelik, Mediators of peripheral blood neutrophilia induced by

photodynamic therapy of solid tumors, Cancer Lett. 183 (2002) 43–51.

[13] J. Sun, I. Cecic, C.S. Parkins, M. Korbelik, Neutrophils as inflammatory and immune effectors in photodynamic therapy-treated mouse SCCVII tumours,

Photochem. Photobiol. Sci. 1 (2002) 690–695.

[14] A.D. Garg, L. Vandenberk, S. Fang, T. Fasche, S. Van Eygen, J. Maes, M. Van

Woensel, C. Koks, N. Vanthillo, N. Graf, P. de Witte, S. Van Gool, P. Salven,

P. Agostinis, Pathogen response-like recruitment and activation of neutrophils by

sterile immunogenic dying cells drives neutrophil-mediated residual cell killing,

Cell Death Differ. 24 (2017) 832–843.